
Mathematical Biosciences and Engineering, 2020, 17(2): 14501478. doi: 10.3934/mbe.2020075
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Global dynamics of an agestructured withinhost viral infection model with celltocell transmission and general humoral immunity response
1 School of Mathematics, Harbin Institute of Technology, Harbin 150001, China
2 School of Mathematical Sciences, Tiangong University, Tianjin 300387, China
Received: , Accepted: , Published:
Special Issues: Modeling and Complex Dynamics of Populations
References
1. M. A. Nowak, S. Bonhoeffer, A. M. Hill, R. Boehme, H. C. Thomas, H. McDade, Viral dynamics in hepatitis B virus infection, Proc. Natl. Acad. Sci. USA, 93 (1996), 43984402.
2. P. Nelson, M. Gilchrist, D. Coombs, J. M. Hyman, A. S. perelson, An agestructured model of HIV infection that allow for variations in the production rate of viral particles and the death rate of productively infected cells, Math. Biosci. Eng., 1 (2004), 267288.
3. L. Rong, Z. Feng, A. S. Perelson, Mathematical analysis of agestructured HIV1 dynamics with combination antiretroviral therapy, SIAM J. Appl. Math., 67 (2007), 731756.
4. G. Huang, X. Liu, Y. Takeuchi, Lyapunov functions and global stability for agestructured HIV infection model, SIAM J. Appl. Math., 72 (2012), 2538.
5. L. Zou, S. Ruan, W. Zhang, An agestructured model for the transmission dynamics of hepatitis B, SIAM J. Appl. Math., 70 (2010), 31213139.
6. J. Wang, R. Zhang, T. Kuniya, Global dynamics for a class of ageinfection HIV models with nonlinear infection rate, J. Math. Anal. Appl., 432 (2015), 289313.
7. M. Shen, Y. Xiao, L. Rong, Global stability of an infectionage structured HIV1 model linking withinhost and betweenhost dynamics, Math. Biosci., 263 (2015), 3750.
8. Y. Wang, K. Liu, Y. Lou, An agestructured withinhost HIV model with Tcell competition, Nonlinear Anal. Real World Appl., 38 (2017), 120.
9. C.Y. Cheng, Y. Dong, Y. Takeuchi, An agestructured virus model with two routes of infection in heterogeneous environments, Nonlinear Anal. Real World Appl., 39 (2018), 464491.
10. Z. Liu, Y. Rong, ZeroHopf bifurcation for an infectionage structured epidemic model with a nonlinear incidence rate, Sci. China Math., 60 (2017), 13711398.
11. J. Wang, X. Dong, Analysis of an HIV infection model incorporating latency age and infection age, Math. Biosci. Eng., 15 (2018), 569594.
12. J. Pang, J. Chen, Z. Liu, P. Bi, S. Ruan, Local and global stabilities of a viral dynamics model with infectionage and immune response, J. Dyn. Diff. Equat., 31 (2019), 793813.
13. K. Hattaf, Y. Yang, Global dynamics of an agestructured viral infection model with general incidence function and absorption, Int. J. Biomath., 11 (2018), 1850065.
14. W. Hübner, G. McNerney, P. Chen, B. M. Dale, R. E. Gordon, F. Y. Chuang, et al., Quantitative 3D video microscopy of HIV transfer across T cell virological synapses, Science, 323 (2009), 17431747.
15. A. Imle, P. Kumberger, N. D. Schnellbächer, J. Fehr, P. CarrilloBustamante, J. Ales, et al., Experimental and computational analyses reveal that environmental restrictions shape HIV1 spread in 3D cultures, Nat. Commun., 10 (2019), 2144.
16. N. Barretto, B. Sainz, S. Hussain, S. L. Uprichard, Determining the involvement and therapeutic implications of host cellular factors in hepatitis C virus celltocell spread, J. Virol., 88 (2014), 50505061.
17. F. Merwaiss, C. Czibener, D. E. Alvarez, Celltocell transmission is the main mechanism supporting bovine viral diarrhea virus spread in cell culture, J. Virol., 93 (2019), e01776.
18. G. L. Smith, B. J. Murphy, M. Law, Vaccinia virus motility, Annu. Rev. Microbiol., 57 (2003), 323342.
19. X. Lai, X. Zou, Modeling HIV1 virus dynamics with both virustocell infection and celltocell transmission, SIAM J. Appl. Math., 74 (2014), 898917.
20. Y. Yang, L. Zou, S. Ruan, Global dynamics of a delayed withinhost viral infection model with both virustocell and celltocell transmissions, Math. Biosci., 270 (2015), 183191.
21. J. Wang, J. Lang, X. Zou, Analysis of an age structured HIV infection model with virustocell infection and celltocell transmission, Nonlinear Anal. Real World Appl., 34 (2017), 7596.
22. X. Zhang, Z. Liu, Bifurcation analysis of an age structured HIV infection model with both virustocell and celltocell transmissions, Int. J. Bifurcation Chaos, 28 (2018), 1850109.
23. A. Murase, T. Sasaki, T. Kajiwara, Stability analysis of pathogenimmune interaction dynamics, J. Math. Biol., 51 (2005), 247267.
24. S. Wang, D. Zou, Global stability of inhost viral models with humoral immunity and intracellular delays, Appl. Math. Model, 51 (2012), 13131322.
25. T. Wang, Z. Hu, F. Liao, Stability and Hopf bifurcation for a virus infection model with delayed humoral immunity response, J. Math. Appl. Anal., 411 (2014), 6374.
26. T. Kajiwara, T. Sasaki, Y. Otani, Global stability of an agestructured model for pathogenimmune interaction, J. Appl. Math. Comput., 59 (2019), 631660.
27. M. A. Nowak, C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 7479.
28. Y. Wang, Y. Zhou, F. Brauer, J. M. Heffernan, Viral dynamics model with CTL immune response incorporating antiretroviral therapy, J. Math. Biol., 67 (2013), 901934.
29. C. Browne, Immune response in virus model structured by cell infectionage, Math. Biosci. Eng., 13 (2016), 887909.
30. X. Duan, S. Yuan, Global dynamics of an agestructured virus model with saturation effects, Math. Methods Appl. Sci., 40 (2017), 18511864.
31. X. Wang, S. Liu, A class of delayed viral models with saturation infection rate and immune response, Math. Methods Appl. Sci., 36 (2013), 125142.
32. H. Shu, L. Wang, J. Watmough, Global stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL immune responses, SIAM J. Appl. Math., 73 (2013), 12801302.
33. X. Tian, R. Xu, J. Lin, Mathematical analysis of an agestructured HIV1 infection model with CTL immune response, Math. Biosci. Eng., 16 (2019), 78507882.
34. K. Hattaf, Spatiotemporal dynamics of a generalized viral infection model with distributed delays and CTL immune response, Computation, 7 (2019), 21.
35. X. Tian, R. Xu, Global stability of a delayed HIV1 infection model with absorption and CTL immune response, IMA J. Appl. Math., 79 (2014), 347359.
36. P. Magal, S. Ruan, Theory and Applications of Abstract Semilinear Cauchy Problems, Applied Mathematical Sciences Vol. 201, Springer, Cham, 2018.
37. P. Magal, Compact attractors for timeperiodic age structured population models, Elect. J. Differ. Eqs., 65 (2001), 65.
38. P. Magal, C. C. McCluskey, G. F. Webb, Lyapunov functional and global asymptotic stability for an infectionage model, Appl. Anal., 89 (2010), 11091140.
39. P. Magal, H. Thieme, Eventual compactness for a semiflow generated by an agestructured models, Commun. Pure Appl. Anal., 3 (2004), 695727.
40. H. L. Smith, H. R. Thieme, Dynamical Systems and Population Persistence, Graduate Studies in Mathematics Vol. 118, American Mathematical Society, Providence, RI, 2011.
41. C. C. McCluskey, Global stability for an SEI epidemiological model with continuous agestructure in the exposed and infectious classes, Math. Biosci. Eng., 9 (2012), 819841.
42. C. Jiang, K. Wang, L. Song, Global dynamics of a delay virus model with recruitment and saturation effects of immune responses, Math. Biosci. Eng., 14 (2017), 12331246.
43. H. Dahari, A. Lo, R. M. Ribeiro, A. S. Perelson, Modeling hepatitis C virus dynamics: liver regeneration and critical drug efficacy, J. Theor. Biol., 247 (2007), 371381.
44. Y. Wang, Y. Zhou, J. Wu, J. Heffernan, Oscillatory viral dynamics in a delayed HIV pathogenesis model, Math. Biosci., 219 (2009), 104112.
45. J. ReyesSilveyra, A. R. Mikler, Modeling immune response and its effect on infectious disease outbreak dynamics, Theor. Biol. Med. Model., 13 (2016), 10.
46. R. Qesmi, S. ElSaadany, J. M. Heffernan, J. Wu, A hepatitis B and C virus model with age since infection that exhibits backward bifurcation, SIAM J. Appl. Math., 71 (2011), 15091530.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)