Citation: Mostafa Adimy, Abdennasser Chekroun, Claudia Pio Ferreira. Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase[J]. Mathematical Biosciences and Engineering, 2020, 17(2): 1329-1354. doi: 10.3934/mbe.2020067
[1] | N. T. J. Bailey, The mathematical theory of infectious diseases and its applications, Charles Griffin & Company Ltd, 1975. |
[2] | H. W. Hethcote, The Mathematics of Infectious Diseases, SIAM Rev., 42 (2000), 599-653. |
[3] | R. M. Anderson and R. M. May, Age-related changes in the rate of disease transmission: implications for the design of vaccination programmes, Epidemiol. Infect., 94 (1985), 365-436. |
[4] | D. Schenzle, An Age-Structured Model of Pre- and Post-Vaccination Measles Transmission, Math. Med. Biol. J. IMA, 1 (1984), 169-191. |
[5] | L. J. Allen and P. van den Driessche, The basic reproduction number in some discrete-time epidemic models, J. Differ. Equations Appl., 14 (2008), 1127-1147. |
[6] | B. F. Finkenstadt and B. T. Grenfell, Time series modelling of childhood diseases: a dynamical systems approach, Appl. Statist., 49 (2000), 187-205. |
[7] | R. M. Anderson and R. M. May, Population biology of infectious diseases: Part I, Nature, 280 (1979), 361-367. |
[8] | F. Brauer and C. Castillo-Chavez, Mathematical models in population biology and epidemiology, 2nd edition, Texts in Applied Mathematics, Springer, New York, 2012. |
[9] | W. O. Kermack and A. G. McKendrick, A contribuition to the mathematical theory of epidemics, Proc. R. Soc. Lond. A, 115 (1927), 700-721. |
[10] | M. Martcheva, An Introduction to Mathematical Epidemiology, 1st edition, Springer Publishing Company, Incorporated, 2015. |
[11] | J. Cushing, An Introduction to Structured Population Dynamics, SIAM, 1998. |
[12] | O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R_{0} in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382. |
[13] | H. R Thieme and C. Castillo-Chavez, How may infection-age-dependent infectivity affect the dynamics of HIV/AIDS?, SIAM J. Appl. Math., 53 (1993), 1447-1479. |
[14] | H. R. Thieme, Mathematics in Population Biology, Princeton University Press, 2003. |
[15] | E. Beretta and Y. Takeuchi, Global stability of an SIR epidemic model with time delays, J. Math. Biol., 33 (1995), 250-260. |
[16] | V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43-61. |
[17] | K. L. Cooke and P. van den Driessche, Analysis of an SEIRS epidemic model with two delays, J. Math. Biol., 35 (1996), 240-260. |
[18] | S. Ruan, D. Xiao and J. C. Beier, On the delayed Ross-Macdonald model for malaria transmission, Bull. Math. Biol., 70 (2008), 1098-1114. |
[19] | L. J. Allen, An Introduction to Stochastic Epidemic Models, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, 81-130. |
[20] | Y. Lin, D. Jiang and S. Wang, Stationary distribution of a stochastic SIS epidemic model with vaccination, Phys. A (Amsterdam, Neth.), 394 (2014), 187-197. |
[21] | Y. Zhao and D. Jiang, The threshold of a stochastic SIS epidemic model with vaccination, Appl. Math. Comput., 243 (2014), 718-727. |
[22] | R. M. Anderson and R. M. May, Spatial, temporal, and genetic heterogeneity in host populations and the design of immunization programs, IMA J. Math. Appl. Med. Biol., 1 (1994), 233-266. |
[23] | A. Scherer and A. McLean, Mathematical models of vaccination, Br. Med. Bull., 62 (2002), 187-199. |
[24] | L. Gao and H. Hethcote, Simulations of rubella vaccination strategies in China, Math. Biosci., 202 (2006), 371-385. |
[25] | H. W. Hethcote, Optimal ages of vaccination for measles, Math. Biosci., 89 (1988), 29-52. |
[26] | R. Donken, T. M. S. Klooster, R. M. Schepp, et al., Immune Responses After 2 Versus 3 Doses of HPV Vaccination up to 4 1/2 Years After Vaccination: An Observational Study Among Dutch Routinely Vaccinated Girls, J. Infect. Dis., 215 (2017), 359-367. |
[27] | M. Stanley, HPV-immune response to infection and vaccination, Infect. Agents Cancer, 5 (2010), 19-25. |
[28] | A. N. Burchell, R. L. Winer, S. de Sanjosé, et al., Epidemiology and transmission dynamics of genital HPV infection, Vaccine, 24 (2006), S52-S61. |
[29] | P. L. Ho, E. N. Miyaji, M. L. S. Oliveira, et al., Economical Value of Vaccines for the Developing Countries-The Case of Instituto Butantan, a Public Institution in Brazil, PLoS Neglected Trop. Dis., 5 (2011), e1300. |
[30] | L. Kubin, Is There a Resurgence of Vaccine Preventable Diseases in the US?, J. Pediatr. Nurs., 44 (2019), 115-118. |
[31] | C. I. Paules, H. D. Marston and A. S. Fauci, Measles in 2019 - going backward, N. Engl. J. Med., 380 (2019), 2185-2187. |
[32] | R. Peralta, C. Vargas-De-León and P. Miramontes, Global Stability Results in a SVIR Epidemic Model with Immunity Loss Rat Depending on the Vaccine-Age, Abstract and Applied Analysis, 2015 (2015), 1-8. Available from: https://www.hindawi.com/journals/aaa/2015/341854/abs/. doi: 10.1155/2015/341854 |
[33] | S. M. Raimundo, H. M. Yang and A. B. Engel, Modelling the effects of temporary immune protection and vaccination against infectious diseases, Appl. Math. Comput., 189 (2007), 1723-1736. |
[34] | D. Bernoulli, Essai d'une nouvelle analyse de la mortalité causée par la petite vérole et des avantages de l'inoculation pour la prévenir, Histoire de l'Acad., Roy. Sci.(Paris) avec Mem, 1 (1760), 1-45. |
[35] | X. Duan, S. Yuan and X. Li, Global stability of an SVIR model with age of vaccination, Appl. Math. Comput., 226 (2014), 528-540. |
[36] | M. Iannelli, M. Martcheva and X. Z. Li, Strain replacement in an epidemic model with superinfection and perfect vaccination, Math. Biosci., 195 (2005), 23-46. |
[37] | X. Z. Li, J. Wang and M. Ghosh, Stability and bifurcation of an SIVS epidemic model with treatment and age of vaccination, Appl. Math. Modell., 34 (2010), 437-450. |
[38] | Q. Liu, D. Jiang, T. Hayat, et al., Analysis of a delayed vaccinated SIR epidemic model with temporary immunity and lévy jumps, Nonlinear Anal. Hybrid Syst., 27 (2018), 29-43. |
[39] | J. Xu and Y. Zhou, Global stability of a multi-group model with generalized nonlinear incidence and vaccination age, Discrete Contin. Dyn. Sys. B, 21 (2016), 977-996. |
[40] | G. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, CRC Press, New York, 1985. |
[41] | J. K. Hale and M. A. Cruz, Existence, uniqueness and continuous dependence for hereditary systems, Ann. Mat. Pura Appl., 85 (1970), 63-81. |
[42] | J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer, 1993. |
[43] | H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Texts in Applied Mathematics, Springer New York, 2011. |
[44] | M. Adimy, A. Chekroun and T. M. Touaoula, Age-structured and delay differential-difference model of hematopoietic stem cell dynamics, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2765-2791. |
[45] | M. A. Cruz and J. K. Hale, Stability of functional differential equations of neutral type, J. Differ. Equations, 7 (1970), 334-355. |
[46] | A. Perasso, An introduction to the basic reproduction number in mathematical epidemiology, ESAIM Proc. Surv., 62 (2018), 123-138. |
[47] | H. I. Freedman and P. Moson, Persistence definitions and their connections, Proc. Am. Math. Soc., 109 (1990), 1025-1033. |
[48] | K. Gu and Y. Liu, Lyapunov-Krasovskii functional for uniform stability of coupled differentialfunctional equations, Automatica, 45 (2009), 798-804. |
[49] | M. Hou, G. Duan and M. Guo, New versions of Barbalat's lemma with applications, J. Control Theory Appl., 8 (2010), 545-547. |