
Mathematical Biosciences and Engineering, 2020, 17(2): 12181232. doi: 10.3934/mbe.2020062
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
The Riemann problem for a TwoPhase model for road traffic with fixed or moving constraints
INdAM Unit, Department of Information Engineering, University of Brescia, Via Branze 38, I25123, Brescia, Italy
Received: , Accepted: , Published:
Special Issues: Mathematical Modeling with Measures
References
1. R. M. Colombo, F. Marcellini, M. Rascle, A 2phase traffic model based on a speed bound. SIAM J. Appl. Math., 70 (2010), 26522666.
2. M. J. Lighthill, G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317345.
3. P. I. Richards, Shock waves on the highway, Oper. Res., 4 (1956), 4251.
4. A. Aw, M. Rascle, Resurrection of "second order" models of traffic flow. SIAM J. Appl. Math., 60 (electronic) (2000), 916938.
5. H. Zhang, A nonequilibrium traffic model devoid of gaslike behavior, Transport. Res. BMeth., 36 (2002), 275290.
6. S. Fan, M. Herty, B. Seibold, Comparative model accuracy of a datafitted generalized AwRascleZhang model, Netw. Heterog. Media, 9 (2014), 239268.
7. S. Fan, Y. Sun, B. Piccoli, B. Seibold, D. B. Work, A Collapsed Generalized AwRascleZhang Model and Its Model Accuracy, arXiv preprint arXiv:1702.03624, 2017.
8. S. Blandin, D. Work, P. Goatin, B. Piccoli, A. Bayen, A general phase transition model for vehicular traffic, SIAM J. Appl. Math., 71 (2011), 107127.
9. R. M. Colombo, Hyperbolic phase transitions in traffic flow, SIAM J. Appl. Math., 63 (2002), 708721.
10. R. M. Colombo, F. Marcellini, A mixed ODEPDE model for vehicular traffic, Math. Method. Appl. Sci., 38 (2015), 12921302.
11. E. Dal Santo, M. D. Rosini, N. Dymski. The Riemann problem for a general phase transition model on networks. In Theory, numerics and applications of hyperbolic problems. I, volume 236 of Springer Proc. Math. Stat., Springer, Cham (2018), 445457.
12. P. Goatin, The AwRascle vehicular traffic flow model with phase transitions, Math. Comput. Model., 44 (2006), 287303.
13. J. P. Lebacque, X. Louis, S. Mammar, B. Schnetzlera, H. HajSalem, Modélisation du trafic autoroutier au second ordre, CR Math., 346 (2008), 12031206.
14. F. Marcellini, Freecongested and micromacro descriptions of traffic flow, Discrete Cont. DynS, 7 (2014), 543556.
15. F. Marcellini, Existence of solutions to a boundary value problem for a phase transition traffic model, Networks and Heterogeneous Media, 12 (2017), 259275.
16. S. N. Kružkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), 228255.
17. P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Society for Industrial and Applied Mathematics, Philadelphia, Pa., (1973). Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 11.
18. R. M. Colombo, M. D. Rosini. Pedestrian flows and nonclassical shocks. Math. Meth. Appl. S., 28 (2005), 15531567.
19. R. M. Colombo, P. Goatin, A well posed conservation law with a variable unilateral constraint, J. Differ. Equations, 234 (2007), 654675.
20. B. Andreianov, C. Donadello, M. D. Rosini, A secondorder model for vehicular traffics with local point constraints on the flow. Math. Models Meth. Appl. S., 26 (2016), 751802.
21. R. M. Colombo, P. Goatin, M. D. Rosini, On the modelling and management of traffic, ESAIM Math. Model. Numer. Anal., 45 (2011), 853872.
22. M. Garavello, P. Goatin, The AwRascle traffic model with locally constrained flow, J. Math. Anal. Appl., 378 (2011), 634648.
23. M. Garavello, S. Villa, The Cauchy problem for the AwRascleZhang traffic model with locally constrained flow, J. Hyperbol. Differ. Eq., 14 (2017), 393414.
24. M. Benyahia, C. Donadello, N. Dymski, M. D. Rosini, An existence result for a constrained twophase transition model with metastable phase for vehicular traffic, NoDEA Nonlinear Differential Equations Appl., 25 (2018), Art. 48, 42.
25. M. Benyahia, M. D. Rosini, A macroscopic traffic model with phase transitions and local point constraints on the flow, Netw. Heterog. Media, 12 (2017), 297317.
26. E. Dal Santo, M. D. Rosini, N. Dymski, M. Benyahia, General phase transition models for vehicular traffic with point constraints on the flow, Math. Methods Appl. Sci., 40 (2017), 66236641.
27. M. L. Delle Monache, P. Goatin, Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result, J. Differential Equations, 257 (2014), 40154029.
28. S. Villa, P. Goatin, C. Chalons, Moving bottlenecks for the AwRascleZhang traffic flow model. Discrete Contin. DynB, 22 (2017), 39213952.
29. T. Liard, F. Marcellini, B. Piccoli, The Riemann problem for the Garz model with a moving constraint. Hyperbolic Problems: Theory, Numerics, Applications, AIMS, to appear, (2019).
30. B. Andreianov, C. Donadello, U. Razafison, M. D. Rosini, Onedimensional conservation laws with nonlocal point constraints on the flux. In Crowd dynamics, Volume 1. Theory, models, and safety problems, Cham: Birkhäuser (2018), 103135.
31. M. Garavello, F. Marcellini, The Godunov method for a 2phase model, Commun. Appl. Ind. Math., 8 (2017), 149164.
32. M. Garavello, F. Marcellini, The Riemann problem at a junction for a phasetransition traffic model, Discrete Cont. DynA, 37 (2017), 51915209.
33. M. Garavello, B. Piccoli, Traffic flow on networks, volume 1 of AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences (AIMS), Springfield, MO, (2006). Conservation laws models.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)