
Mathematical Biosciences and Engineering, 2020, 17(2): 10901131. doi: 10.3934/mbe.2020058.
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Spatiotemporal games of voluntary vaccination in the absence of the infection: the interplay of local versus nonlocal information about vaccine adverse events
1 Department of Mathematics and Computer Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
2 Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, V.le F. D’Alcontres 31, 98166 Messina, Italy
3 Department of Economics and Management, University of Pisa, Via Ridolfi 10, 5612 Pisa, Italy
4 Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622 Villeurbanne, France
5 INRIA Team Dracula, INRIA Lyon La Doua, 69603 Villeurbanne, France
6 Peoples Friendship University of Russia (RUDN University), 6 MiklukhoMaklaya St, Moscow, 117198, Russia
7 International Prevention Research Institute, 95 Cours Lafayette 69006 Lyon, France
Received: , Accepted: , Published:
Special Issues: Spatial dynamics for epidemic models with dispersal of organisms and heterogenity of environment
Keywords: human behavior; vaccination; infectious diseases; spatiotemporal; nonlocal; integrodifferential; traveling waves
Citation: Antonella Lupica, Piero Manfredi, Vitaly Volpert, Annunziata Palumbo, Alberto d'Onofrio. Spatiotemporal games of voluntary vaccination in the absence of the infection: the interplay of local versus nonlocal information about vaccine adverse events. Mathematical Biosciences and Engineering, 2020, 17(2): 10901131. doi: 10.3934/mbe.2020058
References:
 1. N. T. J. Bailey, The mathematical theory of infectious diseases and its applications (2nd edition), 2^{nd }edition, Charles Griffin & Company Ltd, 1975.
 2. V. Capasso and V. Capasso, Mathematical structures of epidemic systems, Springer, 1993.
 3. C. Metcalf, E. Jessica, W. J. Edmunds, et al., Six challenges in modelling for public health policy, Epidemics, 10 (2015), 9396.
 4. P. Manfredi and A. d'Onofrio, Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases, Springer, 2013.
 5. Z. Wang, C. T. Bauch, S. Bhattacharyya, et al., Statistical physics of vaccination, Phys. Rep., 664 (2016), 1113.
 6. V. Capasso and G. Serio, A generalization of the KermackMcKendrick deterministic epidemic model, Math. Biosci., 42 (1978), 4361.
 7. R. Casiday, T. Cresswell, D. Wilson, et al., A survey of UK parental attitudes to the MMR vaccine and trust in medical authority, Vaccine, 24 (2006), 177184.
 8. E. Dubé, C. Laberge, M. Guay, et al., Vaccine hesitancy: an overview, Human Vaccin. Immunother., 9 (2013), 17631773.
 9. V. A. A. Jansen, N. Stollenwerk, H. J. Jensen, et al., Measles outbreaks in a population with declining vaccine uptake, Science, 301 (2003), 804804.
 10. S. B. Omer, D. A. Salmon, W. A. Orenstein, et al., Vaccine refusal, mandatory immunization, and the risks of vaccinepreventable diseases, N. Engl. J. Med., 360 (2009), 19811988.
 11. R. Löfstedt, Risk management in posttrust societies, PalgraveMcMillan, 2005.
 12. C. T. Bauch, Imitation dynamics predict vaccinating behaviour, Proc. R. Soc. Lond. B Biol. Sci., 272 (2005), 16691675.
 13. A. d'Onofrio, P. Manfredi and P. Poletti, The impact of vaccine side effects on the natural history of immunization programmes: an imitationgame approach, J. Theor. Biol., 273 (2011), 6371.
 14. A. d'Onofrio, P. Manfredi and P. Poletti, The interplay of public intervention and private choices in determining the outcome of vaccination programmes, PLoS ONE, 7 (2012), e45653.
 15. B. Buonomo, G. Carbone and A. d'Onofrio, Effect of seasonality on the dynamics of an imitation based vaccination model with public health intervention, Math. Biosci. Eng., 15 (2018), 299321.
 16. D. G. Kendall, Mathematical models of the spread of infection, Math. Comput. Sci. Biol. Med. (1965), 213225.
 17. N. T. J. Bailey, The simulation of stochastic epidemics in two dimensions, Proc. Fifth Berkeley Symp. Math. Statist. Prob., 4 (1967), 237257.
 18. D. G. Aronson, The asymptotic speed of propagation of a simple epidemic, Nonlinear Diffusion, 14 (1977), 123.
 19. V. Capasso, Global solution for a diffusive nonlinear deterministic epidemic model, SIAM J. Appl. Math., 35 (1978), 274284.
 20. F. Hoppensteadt, Mathematical Theories of Populations: Deomgraphics, Genetics, and Epidemics, Siam, 1975.
 21. H. Malchow, S. V. Petrovskii and E. Venturino, Spatiotemporal patterns in ecology and epidemiology: theory, models, and simulation, Chapman and Hall/CRC, 2007.
 22. J. D. Murray, Mathematical biology II. Spatial models and biomedical applications, SpringerVerlag New York Incorporated New York, 2001.
 23. S. Ruan and J. Wu, Modeling spatial spread of communicable diseases involving animal hosts, Spatial Ecol., (2009), 293316.
 24. J. V. Noble, Geographic and temporal development of plagues, Nature, 250 (1974), 726.
 25. A. Ducrot and T. Giletti, Convergence to a pulsating travelling wave for an epidemic reactiondiffusion system with nondiffusive susceptible population, J. Math. Biol., 69 (2014), 533552.
 26. P. Magal, G. F. Webb and Y. Wu, On the Basic Reproduction Number of ReactionDiffusion Epidemic Models, SIAM J. Appl. Math., 79 (2019), 284304.
 27. P. Magal, G. F. Webb and Y. Wu, Spatial spread of epidemic diseases in geographical settings: seasonal influenza epidemics in Puerto Rico, arXiv preprint arXiv:1801.01856 (2018).
 28. W. E. Fitzgibbon, J. J. Morgan, G. F. Webb, et al., A vectorhost epidemic model with spatial structure and age of infection, Nonlinear AnalReal., 41 (2018), 692705.
 29. L. Zhao, Z. C. Wang and S. Ruan, Traveling wave solutions in a twogroup SIR epidemic model with constant recruitment, J. Math. Biol., 77 (2018), 18711915.
 30. S. Ruan, Spatialtemporal dynamics in nonlocal epidemiological models, Math. Life Sci. Med., (2007), 97122.
 31. B. Buonomo, P. Manfredi and A. d'Onofrio, Optimal timeprofiles of public health intervention to shape voluntary vaccination for childhood diseases, J. Math. Biol., 78 (2019), 10891113.
 32. R. Peres, E. Muller and V. Mahajan, Innovation diffusion and new product growth models: A critical review and research directions, Int. J. Res. Market., 27 (2010), 91106.
 33. V. Capasso and M. Zonno, Mathematical Models for the Diffusion of Innovations, Proc. Fourth Eur. Conference Math. Industry, (1991), 225233.
 34. V. Mahajan and R. A. Peterson, Models for innovation diffusion, Sage Publications Inc, 1985.
 35. V. Capasso, A. Di Liddo and L. Maddalena, A nonlinear model for the geographical spread of innovations, Dyn. Syst Appl., 3 (1994), 207220.
 36. F. M. Bass, A new product growth for model consumer durables, Manag. Sci., 15 (1969), 215227.
 37. S. Funk, E. Gilad, C. Watkins, et al., The spread of awareness and its impact on epidemic outbreaks, Proc. Natl. Acad. Sci., 106 (2009), 68726877.
 38. E. Frey, Evolutionary game theory: Theoretical concepts and applications to microbial communities, Physica A, 389 (2010), 42654298.
 39. R. A. Fisher, The wave of advance of advantageous genes, Annals Eugenics, 7 (1937), 355369.
 40. V. Volpert, Elliptic Partial Differential Equations: Volume 2: ReactionDiffusion Equations, 104, Springer, 2014.
 41. A. N. Kolmogorov, I. N. Petrovsky and N. S. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. Moskow, Ser. Internat., Sec. A, 1 (1937), 125.
 42. A. D. Polyanin and V. F. Zaitsev, Handbook of ordinary differential equations: exact solutions, methods, and problems, Chapman and Hall/CRC, 2017.
 43. J. D. Murray, Mathematical biology I: an introduction, Springer New York, 2002.
 44. A. I. Volpert, V. A. Volpert and V. A. Volpert, Traveling wave solutions of parabolic systems, 140 American Mathematical Soc., 1994.
 45. S. Vakulenko and V. Volpert, Generalized travelling waves for perturbed monotone reactiondiffusion systems, Nonlinear Analysis TMA, 6 (2001), 757776.
 46. A. d'Onofrio, P. Manfredi and E. Salinelli, Vaccinating behaviour and the dynamics of vaccine preventable infections, Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases (2013), 267287.
 47. M. Mincheva and M. R. Roussel, TuringHopf instability in biochemical reaction networks arising from pairs of subnetworks, Math. Biosci., 240 (2012), 111.
 48. B. Ermentrout and M. Lewis, Pattern formation in systems with one spatially distributed species, Bull. Math. Biol., 59 (1997), 533549.
 49. A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. R. Soc. Lond. B, 237 (1952), 3772.
 50. N. Stollenwerk and V. Jansen, Population Biology and Criticality: From critical birthdeath processes to selforganized criticality in mutation pathogen systems, World Scientific, 2011.
 51. N. Stollenwerk, S. van Noort, J. Martins, et al., A spatially stochastic epidemic model with partial immunization shows in mean field approximation the reinfection threshold, J. Biol. Dyn., 4 (2010), 634649.
 52. A. M. Albano, N. B. Abraham, D. E. Chyba, et al., Bifurcations, propagating solutions, and phase transitions in a nonlinear chemical reaction with diffusion, Am. J. Phys., 52 (1984), 161167.
 53. J. P. Eckmann and T. Gallay, Front solutions for the GinzburgLandau equation, Commun. Math. Phys., 152 (1993), 221248.
 54. B. J. Matkowsky and V. A. Volpert, Stability of plane wave solutions of complex GinzburgLandau equations, Quart. Appl. Math., 51 (1993), 265281.
 55. L. E. Reichl, A modern course in statistical physics, WileyVCH, 2016.
 56. M. C. Gonzalez, C. A. Hidalgo and A. L. Barabasi, Understanding individual human mobility patterns, Nature, 453 (2008), 779.
 57. D. Balcan and A. Vespignani, Phase transitions in contagion processes mediated by recurrent mobility patterns, Nature Phys., 7 (2011), 581.
 58. U. Skwara, J. Martins, P. Ghaffari, et al., Fractional calculus and superdiffusion in epidemiology: shift of critical thresholds, Proceedings of the 12th International Conference on Computational and Mathematical Methods in Science and Engineering, La Manga (2012).
 59. J. P. Boto and N. Stollenwerk, Fractional calculus and Levy flights: modelling spatial epidemic spreading, Computational and Mathematical Methods in Science and Engineering, (2009).
 60. U. Skwara, J. Martins, P. Ghaffari, et al., Applications of fractional calculus to epidemiological models, AIP Conf. Proc., 1479 (2012), 13391342.
 61. U. Skwara, L. Mateus, R. Filipe, et al., Superdiffusion and epidemiological spreading, Ecol. Complex., 36 (2018), 168183.
 62. D. Brockmann and L. Hufnagel, Front propagation in reactionsuperdiffusion dynamics: Taming Lévy flights with fluctuations, Phys. Rev. Lett., 98 (2009), 178301.
 63. D. R. Sinclair, J. J. Grefenstette, M. G. Krauland, et al., Forecasted Size of Measles Outbreaks Associated With Vaccination Exemptions for Schoolchildren, JAMA Network Open, 2 (2019), e199768e199768.
Reader Comments
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *