Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Continuous dependence of an invariant measure on the jump rate of a piecewise-deterministic Markov process

1 Institute of Mathematics, University of Silesia in Katowice, Bankowa 14, 40-007 Katowice, Poland
2 Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands

Special Issues: Mathematical Modeling with Measures

We investigate a piecewise-deterministic Markov process, evolving on a Polish metric space, whose deterministic behaviour between random jumps is governed by some semi-flow, and any state right after the jump is attained by a randomly selected continuous transformation. It is assumed that the jumps appear at random moments, which coincide with the jump times of a Poisson process with intensity λ. The model of this type, although in a more general version, was examined in our previous papers, where we have shown, among others, that the Markov process under consideration possesses a unique invariant probability measure, say $\nu_{\lambda}^*$. The aim of this paper is to prove that the map $\lambda\mapsto\nu_{\lambda}^*$ is continuous (in the topology of weak convergence of probability measures). The studied dynamical system is inspired by certain stochastic models for cell division and gene expression.
  Figure/Table
  Supplementary
  Article Metrics

Keywords invariant measure; piecewise-deterministic Markov process; random dynamical system; jump rate; continuous dependence

Citation: Dawid Czapla, Sander C. Hille, Katarzyna Horbacz, Hanna Wojewódka-Ściążko. Continuous dependence of an invariant measure on the jump rate of a piecewise-deterministic Markov process. Mathematical Biosciences and Engineering, 2020, 17(2): 1059-1073. doi: 10.3934/mbe.2020056

References

  • 1. M. H. A. Davis, Piecewise-deterministic Markov processes: a general class of non-diffusion stochastic models, J. Roy. Statist. Soc. Ser. B, 46 (1984), 353-388.
  • 2. M. C. Mackey, M. Tyran-Kamińska, R. Yvinec, Dynamic behaviour of stochastic gene expression models in the presence of bursting, SIAM J. Appl. Math., 73 (2013), 1830-1852.
  • 3. S. C. Hille, K. Horbacz, T. Szarek, Existence of a unique invariant measure for a class of equicontinuous Markov operators with application to a stochastic model for an autoregulated gene, Ann. Math. Blaise Pascal, 23 (2016), 171-217.
  • 4. A. Lasota and M. C. Mackey, Cell division and the stability of cellular populations, J. Math. Biol., 38 (1999), 241-261.
  • 5. M. G. Riedler, M. Thieullen, G. Wainrib, Limit theorems for infinite-dimensional piecewise deterministic Markov processes. Applications to stochastic excitable membrane models, Electron. J. Probab., 17 (2012), 1-48.
  • 6. T. Alkurdi, S. C. Hille, O. Van Gaans, Persistence of stability for equilibria of map iterations in Banach spaces under small perturbations, Potential Anal., 42 (2015), 175-201.
  • 7. M. Benaïm, C. Lobry, Lotka Volterra with randomly fluctuationg environments or 'how switching between benefcial environments can make survival harder', Ann. Appl. Probab., 26 (2016), 3754-3785.
  • 8. M. Benaïm, S. Le Borgne, F. Malrieu, P. A. Zitt, Qualitative properties of certain piecewise deterministic Markov processes, Ann. Inst. Henri Poincar Probab., 51 (2014), 1040-1075.
  • 9. M. Benaïm, S. Le Borgne, F. Malrieu, P. A. Zitt, Quantitative ergodicity for some switched dynamical systems, Electron. Commun. Probab., 17 (2012), 1-14.
  • 10. F. Dufour, O. L. V. Costa, Stability of piecewise-deterministic Markov processes, SIAM J. Control Optim., 37 (1999), 1483-1502.
  • 11. O. L. V. Costa, F. Dufour, Stability and ergodicity of piecewise deterministic Markov processes, SIAM J. Control Optim., 47 (2008), 1053-1077.
  • 12. B. Cloez, M. Hairer, Exponential ergodicity for Markov processes with random switching, Bernoulli, 21 (2015), 505-536.
  • 13. D. Czapla, K. Horbacz, H. Wojewódka-Ściążko, Ergodic properties of some piecewise-deterministic Markov process with application to gene expression modelling, Stochastic Process. Appl., 2019, doi: 10.1016/j.spa.2019.08.006.
  • 14. D. Czapla, J. Kubieniec, Exponential ergodicity of some Markov dynamical systems with application to a Poisson driven stochastic differential equation, Dyn. Syst., 34 (2019), 130-156.
  • 15. H. Wojewódka, Exponential rate of convergence for some Markov operators, Statist. Probab. Lett., 83 (2013), 2337-2347.
  • 16. S. C. Hille, K. Horbacz, T. Szarek, H. Wojewódka, Limit theorems for some Markov chains, J. Math. Anal. Appl., 443 (2016), 385-408.
  • 17. S. C. Hille, K. Horbacz, T. Szarek, H. Wojewódka, Law of the iterated logarithm for some Markov operators, Asymptotic Anal., 97 (2016), 91-112.
  • 18. D. Czapla, K. Horbacz, H. Wojewódka-Ściążko, A useful version of the central limit theorem for a general class of Markov chains, preprint, arXiv:1804.09220v2.
  • 19. D. Czapla, K. Horbacz, H. Wojewódka-Ściążko, The Strassen invariance principle for certain non-stationary Markov-Feller chains, preprint, arXiv:1810.07300v2.
  • 20. T. Komorowski, C. Landim, S. Olla, Fluctuations in Markov processes. Time symmetry and martingale approximation, Springer-Verlag, Heidelberg, 2012.
  • 21. V. I. Bogachev, Measure Theory, vol. II, Springer-Verlag, Berlin, 2007.
  • 22. P. Gwiazda, S. C. Hille, K. Łyczek, A. Świerczewska-Gwiazda, Differentiability in perturbation parameter of measure solutions to perturbed transport equation, Kinet. Relat. Mod., (2019), in press, preprint arXiv:18l06.00357.
  • 23. N. Weaver, Lipschitz Algebras, World Scientific Publishing Co. Pte Ltd., Singapore, 1999.
  • 24. V. I. Bogachev, Measure Theory, vol. I, Springer-Verlag, Berlin, 2007.
  • 25. R. M. Dudley, Convergence of Baire measures, Stud. Math., 27 (1966), 251-268.
  • 26. T. Szarek, Invariant measures for Markov operators with application to function systems, Studia Math., 154 (2003), 207-222.
  • 27. D. T. H. Worm, Semigroups on spaces of measures, Ph.D thesis, Leiden University, The Netherlands, 2010. Available from: www.math.leidenuniv.nl/nl/theses/PhD/.
  • 28. J. Diestel, Jr. J. J. Uhl, Vector measures, American Mathematical Society, Providence, R.I., 1977.
  • 29. J. Evers, S. C. Hille, A. Muntean, Mild solutions to a measure-valued mass evolution problem with flux boundary conditions, J. Diff. Equ., 259 (2015), 1068-1097.
  • 30. M. Crandall, T. Ligget, Generation of semigroups of nonlinear transformations on general Banach spaces, Amer. J. Math., 93 (1971), 265-298.
  • 31. R. Kapica, M. Ślęczka, Random iterations with place dependent probabilities, to appear in Probab. Math. Statist. (2019).
  • 32. A. Lasota, J. A. Yorke, Lower bound technique for Markov operators and iterated function systems, Random Comput. Dyn., 2 (1994), 41-77.
  • 33. O. Stenflo, A note on a theorem of Karlin, Stat. Probab. Lett., 54 (2001), 183-187.
  • 34. J. J. Tyson, K. B. Hannsgen, Cell growth and division: a deterministic/probabilistic model of the cell cycle, J. Math. Biol., 23 (1986), 231-246.
  • 35. W. Rudin, Principles of mathematical analysis, McGraw-Hill, Inc., New York, 1976.

 

Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved