Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

A self-adaptive mechanism using weibull probability distribution to improve metaheuristic algorithms to solve combinatorial optimization problems in dynamic environments

1 Instituto Mexicano del Transporte, Querétaro
2 Tecnologico de Monterrey

Special Issues: Bio-inspired algorithms and Bio-systems

In last decades, the interest to solve dynamic combinatorial optimization problems has increased. Metaheuristics have been used to find good solutions in a reasonably low time, and the use of self-adaptive strategies has increased considerably due to these kind of mechanism proved to be a good alternative to improve performance in these algorithms. On this research, the performance of a genetic algorithm is improved through a self-adaptive mechanism to solve dynamic combinatorial problems: 3-SAT, One-Max and TSP, using the genotype-phenotype mapping strategy and probabilistic distributions to define parameters in the algorithm. The mechanism demonstrates the capability to adapt algorithms in dynamic environments.
  Article Metrics


1. Y. Majid and K. Esmaile, Solving the vehicle routing problem by a hybrid metaheuristic algorithm, J. Industr. Eng. Int., 8 (2012), 11.

2. S. X. Yang, T. T. Nguyen, C. H. Li, Evolutionary dynamic optimization test and evaluation environments, Evolut. Comput. Dyn. Opt. Probl., 490 (2013), 3.

3. S. X. Yang and X. Yao, Evolutionary computation for dynamic optimization problems, Springer-Verlag Berlin Heidelberg, 2013. Available from: https://doi.org/10.1007/978-3-642-38416-5

4. H. Q. Liu, L. Pretorius and D. D. Jiang, Optimization of cold chain logistics distribution network terminal, EURASOP J. Wireless Commun. Network., 2018, 158.

5. E. M. Cepolina and A. Farina, A new urban freight distribution scheme and an optimization methodology for reducing its overall cost, Europ. Transp. Res. Rev., 7 (2014), 1.

6. F. F. Razi, A hybrid DEA-based K-means and invasive weed optimization for facility location problem, J. Ind. Eng. Int., 2018. Available from: https://doi.org/10.1007/s40092-018-0283-5.

7. V. M. Kumar, A. Murthy and K. Chandrashekara, A hybrid algorithm optimization approach for machine loading problem in flexible manufacturing system, J. Ind. Eng. Int., 8 (2012), 3. Available from: https://doi.org/10.1186/2251-712X-8-3.

8. M. Tayyab, B. Sarkar and B. N. Yahya, Imperfect multi-stage lean manufacturing system with rework under fuzzy demand, Mathematics, 7 (2019), 13.

9. S. Khorasgani, S. Mahdi and M. Ghaffari, Developing a cellular manufacturing model considering the alternative routes, tool assignment, and machine reliability, J. Ind. Eng. Int., 14 (2018): 627.

10. S. X. Yanga, J. G. Yong and T. T. Nguyenc, Metaheuristics for Dynamic combinatorial optimization problems, IMA J. Manage. Math., 24 (2012). Available from: https://doi.org/10.1093/imaman/dps021.

11. R. M. Karp, Reducibility among combinatorial problems, Compl. Comput. Computat., 1972. Available from: https://doi.org/10.1007/978-1-4684-2001-2_9.

12. C. H. Li, M. Yang and L. S. Kang, A new approach to solving dynamic traveling salesman problems, SEAL, 2006, 4247. Available from: https://doi.org/10.1007/11903697_31.

13. T. Volling, M. Grunewald and T. S. Spengler, An integrated inventory—transportation system with periodic pick-ups and leveled replenishment, Business Res., 6 (2013), 173. Available from: https://doi.org/10.1007/BF03342748.

14. G. P. Lechuga, Optimal logistics strategy to distribute medicines in clinics and hospitals, J. Math. Industry, 8 (2018), 2. Available from: https://doi.org/10.1186/s13362-018-0044-5.

15. S. Henn, S. Koch, K. F. Doerner, et al., Metaheuristics for the order batching problem in manual order picking systems, Business Res., 3(2018), 82. Available from: https://doi.org/10.1007/BF03342717

16. R. Srikakulapu and U. Vinatha, Optimized design of collector topology for offshore wind farm based on ant colony optimization with multiple travelling salesman problem, J. Modern Power Syst. Clean Energy, 6 (2018), 1181. Available from: https://doi.org/10.1007/s40565-018-0386-4.

17. G. Moslemipour, A hybrid CS-SA intelligent approach to solve uncertain dynamic facility layout problems considering dependency of demands, J. Ind. Eng. Int., 14(2018), 429. Available from: https://doi.org/10.1007/s40092-017-0222-x.

18. J. H. Holland, Adaptation in natural and artificial systems [Master's thesis], University of Michigan Press, Ann Arbor, MI, 1975.

19. D. E. Goldberg, Genetic algorithms in search, optimization, and machine learning, 1st rev. Addison-Wesley Longman Publishing Co, 1989. ISBN: 0201157675.

20. K. A. De Jong, Genetic algorithms a 10 year perspective, International Conference Genetic Algorithms, 1985, 169-177. ISBN: 0-8058-0426-9.

21. Y. H. Liao and C. T. Sun, An educational genetic algorithms learning tool, IEEE Transact. Educ., 2001. Available from: http://www.ewh.ieee.org/soc/es/May2001/14/Begin.htm.

22. J. A. B. Vera, J. Mora-Vargas, M. González-Mendoza, et al., Brief review of techniques used to develop adaptive evolutionary algorithms, Open Cybern. Syst. J., 11(2017), 1-12.

23. J. A. B. Vera, Investigación del rol del mapeo genotipo-fenotipo y del operador de mutación en algoritmos genéticos aplicados a problemas dinámicos [Master's thesis], Mexico, Tecnologico de Monterrey, 2011, Spanish.

24. R. E. Keller and W. Banzhaf, Genetic programming using genotype-phenotype mapping from linear genomes into linear phenotypes, Proceedings of the First Annual Conference on Genetic Programming, 1996, 116-122. ISBN: 0-262-61127-9.

25. J. Mora, C. Stephens and H. Waelbroeck, Symmetry breaking and adaptation: Evidence from a toy model of a virus, Biosystems, 51 (1997), 1-14.

26. F. Rothlauf and D. E. Goldberg, Redundant representations in evolutionary computation, Evol. Comput., 11 (2003), 381-415.

27. K. Ohnishi and K. Yoshida, Evolutionary change in developmental timing, GECCO 2005, 2005, 1561-1562. Available from: https://doi.org/10.1145/1068009.1068259.

28. D. Fagan, Genotype-phenotype mapping in dynamic environments with grammatical evolution, GECCO 2011, 2011. Available from: https://doi.org/10.1145/2001858.2002091.

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved