Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Multi-scale modeling of cholera dynamics in a spatially heterogeneous environment

University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA

Special Issues: Spatial dynamics for epidemic models with dispersal of organisms and heterogenity of environment

We propose a multi-group, multi-scale mathematical model to investigate the betweenhost and within-host dynamics of cholera. At the between-host level, we divide the total population into a number of host groups with different characteristics representing spatial heterogeneity. Our model incorporates the dual transmission pathways that include both the environment-to-human and human-to-human transmission routes. At the within-host level, our model describes the interaction among the pathogenic bacteria, viruses, and host immune response. For each host group, we couple the between-host disease transmission and within-host pathogen dynamics at different time scales. Our study thus integrates multi-scale modeling and multi-group modeling into one single framework. We describe the general modeling framework and demonstrate it through two specific and biologically important cases. We conduct detailed analysis for each case and obtain threshold results regarding the multi-scale dynamics of cholera in a spatially heterogeneous environment. In particular, we find that the between-host reproduction number is shaped by the collection of the disease risk factors from all the individual host groups. Our findings highlight the importance of a whole-population approach for cholera prevention and intervention.
  Figure/Table
  Supplementary
  Article Metrics

References

1. B. Boldin and O. Diekmann, Superinfections can induce evolutionarily stable coexistence of pathogens, J. Math. Biol., 56 (2008), 635-672.

2. M. A. Gilchrist and A. Sasaki, Modeling host-parasite coevolution: a nested approach based on mechanistic models, J. Theor. Biol., 218 (2002), 289-308.

3. M. Marcheva, N. Tuncer and C. M. St. Mary, Coupling within-host and between-host infectious disease models, Biomath., 4 (2015), 1510091.

4. M. Martcheva and X. Z. Li, Linking immunological and epidemiological dynamics of HIV: the case of super-infection, J. Biol. Dynam., 7 (2013), 161-182.

5. N. Mideo, S. Alizon and T. Day, Linking within- and between-host disease dynamics, Trends Ecol. Evol., 23 (2008), 511-517.

6. M. Ali, A. R. Nelson, A. L. Lopez, et al., Updated global burden of cholera in endemic countries, PLoS Neglect. Trop. D., 9 (2015), e0003832.

7. WHO, Cholera Fact Sheet number 107: December 2017. Available from: http://www.who.int/mediacentre/factsheets/fs107/en/

8. D. M. Hartley, J. G. Morris and D. L. Smith, Hyperinfectivity: a critical element in the ability of V. cholerae to cause epidemics? PLoS Med., 3 (2006), 0063-0069.

9. E. J. Nelson, J. B. Harris, J. G. Morris, et al., Cholera transmission: The host, pathogen and bacteriophage dynamics, Nat. Rev. Microbiol., 7 (2009), 693-702.

10. C. T. Codeço, Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir, BMC Infect. Dis., 1 (2001), 1.

11. J. R. Andrews and S. Basu, Transmission dynamics and control of cholera in Haiti: an epidemic model, Lancet, 377 (2011), 1248-1255.

12. Z. Mukandavire, S. Liao, J. Wang, et al., Estimating the reproductive numbers for the 2008-2009 cholera outbreaks in Zimbabwe, P. Natl. Acad. Sci. U.S.A., 108 (2011), 8767-8772.    

13. L. Righetto, E. Bertuzzo, R. Casagrandi, et al., Modeling human movement in a cholera spreading along fluvial systems, Ecohydrol., 4 (2011), 49-55.

14. Z. Shuai and P. van den Driessche, Global dynamics of cholera models with differential infectivity, Math. Biosci., 234 (2011), 118-126.

15. J. P. Tian and J. Wang, Global stability for cholera epidemic models, Math. Biosci., 232 (2011), 31-41.

16. J. H. Tien and D. J. D. Earn, Multiple transmission pathways and disease dynamics in a waterborne pathogen model, Bull. Math. Biol., 72 (2010), 1506-1533.

17. A. R. Tuite, J. H. Tien, M. C. Eisenberg, et al., Cholera epidemic in Haiti, 2010: Using a transmission model to explain spatial spread of disease and identify optimal control interventions, Ann. Int. Med., 154 (2011), 293-302.

18. E. Bertuzzo, R. Casagrandi, M. Gatto, et al., On spatially explicit models of cholera epidemics, J. Royal Soc. Interface, 7 (2010), 321-333.

19. A. Rinaldo, E. Bertuzzo, L. Mari, et al., Reassessment of the 2010-2011 Haiti cholera outbreak and rainfall-driven multiseason projections, P. Natl. Acad. Sci. U.S.A., 109 (2012), 6602-6607.

20. D. He, X. Wang, D. Gao, et al., Modeling the 2016-2017 Yemen cholera outbreak with the impact of limited medical resources, J. Theor. Biol., 451 (2018), 80-85.

21. X. Wang and J. Wang, Analysis of cholera epidemics with bacterial growth and spatial movement, J. Biol. Dynam., 9 (2015), 233-261.

22. X. Wang, D. Posny and J. Wang, A Reaction-Convection-Diffusion Model for Cholera Spatial Dynamics, Discrete Cont. Dyn-S, 21 (2016), 2785-2809.

23. X. Wang, X.-Q. Zhao and J. Wang, A cholera epidemic model in a spatiotemporally heterogeneous environment, J. Math. Anal. Appl., 468 (2018), 893-912.

24. E. Bertuzzo, L. Mari, L. Righetto, et al., Prediction of the spatial evolution and effects of control measures for the unfolding Haiti cholera outbreak, Geophys. Res. Lett., 38 (2011), L06403.

25. M. C. Eisenberg, Z. Shuaic, J. H. Tien, et al., A cholera model in a patchy environment with water and human movement, Math. Biosci., 246 (2013), 105-112.

26. M. K. Waldor and J. J. Mekalanos, Lysogenic conversion by a filamentous phage encoding cholera toxin, Science, 272 (1996), 1910-1914.

27. R. R. Colwell, A global and historical perspective of the genus Vibrio, in The Biology of Vibrios, F.L. Thompson, B. Austin, and J. Swings (eds.), ASM Press, Washington DC, 2006.

28. X. Wang and J. Wang, Disease dynamics in a coupled cholera model linking within-host and between-host interactions, J. Biol. Dynam., 11 (2017), 238-262.

29. X. Wang and J. Wang, Modeling the within-host dynamics of cholera: bacterial-viral interaction, J. Biol. Dynam., 11 (2017), 484-501.

30. C. Ratchford and J. Wang, Modeling cholera dynamics at multiple scales: environmental evolution, between-host transmission, and within-host interaction, Math. Biosci. Eng., 16 (2019), 782-812.

31. H. Guo, M. Li and Z. Shuai, Global stability of the endemic equilibrium of multi-group SIR epidemic models, Can. Appl. Math. Q., 14 (2006), 259-283.

32. R. Sun and J. Shi, Global stability of multigroup epidemic model with group mixing and nonlinear incidence rates, Appl. Math. Comput., 218 (2011), 280-286.

33. C. Cosner, J. C. Beier, R. S. Cantrell, et al., The effects of human movement on the persistence of vector-borne diseases, J. Theor. Biol., 258 (2009), 550-560.

34. Z. Shuai and P. van den Driessche, Modeling and control of cholera on networks with a common water source, J. Biol. Dynam., 9 (2015), 90-103.

35. P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.

36. Z. Shuai and P. van den Driessche, Global stability of infectious disease models using Lyapunov functions, SIAM J. Appl. Math., 73 (2013), 1513-1532.

37. M. Li and Z. Shuai, Global-stability problem for coupled systems of differential equations on networks, J. Differ. Equations, 248 (2010), 1-20.

38. N. M. Ferguson, D. A. T. Cummings, S. Cauchemez, et al., Strategies for containing an emerging influenza pandemic in Southeast Asia, Nature, 437 (2005), 209-214.

39. B. Roche, J. M. Drake and P. Rohani, An agent-based model to study the epidemiological and evolutionary dynamics of Influenza viruses, BMC Bioinform., 12 (2011), 87.

40. E. Bonabeau, Agent-based modeling: Methods and techniques for simulating human systems, P. Natl. Acad. Sci. U.S.A., 99 (2002), 7280-7287.

41. P. Kumberger, K. Durso-Cain, S. Uprichard, et al., Accounting for space - Quantification of cellto-cell transmission kinetics using virus dynamics models, Viruses, 10 (2018), 200.

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved