
Mathematical Biosciences and Engineering, 2020, 17(1): 442459. doi: 10.3934/mbe.2020024.
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Complexbalanced equilibria of generalized massaction systems: necessary conditions for linear stability
1 Faculty of Mathematics, University of Vienna, OskarMorgensternPlatz 1, 1090 Wien, Austria
2 Institute for Algebra, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
Received: , Accepted: , Published:
Special Issues: Mathematical analysis of reaction networks: theoretical advances and applications
Keywords: reaction networks; generalized massaction kinetics; diagonal stability; Dstability
Citation: Balázs Boros, Stefan Müller, Georg Regensburger. Complexbalanced equilibria of generalized massaction systems: necessary conditions for linear stability. Mathematical Biosciences and Engineering, 2020, 17(1): 442459. doi: 10.3934/mbe.2020024
References:
 1. F. Horn and R. Jackson, General mass action kinetics, Arch. Rational Mech. Anal., 47 (1972), 81116.
 2. M. A. Savageau, Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions, J. Theor. Biol., 25 (1969), 365369.
 3. E. O. Voit, Biochemical systems theory: a review, ISRN Biomath., Article ID 897658.
 4. S. Müller and G. Regensburger, Generalized mass action systems: Complex balancing equilibria and sign vectors of the stoichiometric and kineticorder subspaces, SIAM J. Appl. Math., 72 (2012), 19261947.
 5. S. Müller and G. Regensburger, Generalized massaction systems and positive solutions of polynomial equations with real and symbolic exponents, in Computer Algebra in Scientific Computing. Proceedings of the 16th International Workshop (CASC 2014) (eds. V. P. Gerdt, W. Koepf, E. W. Mayr and E. H. Vorozhtsov), vol. 8660 of Lecture Notes in Comput. Sci., Springer, Cham, 2014, 302323.
 6. M. D. Johnston, S. Müller and C. Pantea, A deficiencybased approach to parametrizing positive equilibria of biochemical reaction systems, Bull. Math. Biol., 81 (2019), 11431172.
 7. S. Müller, J. Hofbauer and G. Regensburger, On the bijectivity of families of exponential/generalized polynomial maps, SIAM J. Appl. Algebra Geom., 3 (2019), 412438.
 8. B. Boros, J. Hofbauer and S. Müller, On global stability of the Lotka reactions with generalized massaction kinetics, Acta Appl. Math., 151 (2017), 5380.
 9. B. Boros, J. Hofbauer, S. Müller and G. Regensburger, The center problem for the Lotka reactions with generalized massaction kinetics, Qual. Theory Dyn. Syst., 17 (2018), 403410.
 10. B. Boros, J. Hofbauer, S. Müller and G. Regensburger, Planar Ssystems: Global stability and the center problem, Discrete Contin. Dyn. Syst. Ser. A, 39 (2019), 707727.
 11. B. Boros and J. Hofbauer, Planar Ssystems: Permanence, J. Differential Equations, 266 (2019), 37873817.
 12. G. Craciun, A. Dickenstein, A. Shiu and B. Sturmfels, Toric dynamical systems, J. Symbolic Comput., 44 (2009), 15511565.
 13. D. Siegel and M. D. Johnston, A stratum approach to global stability of complex balanced systems, Dyn. Syst., 26 (2011), 125146.
 14. M. A. AlRadhawi and D. Angeli, New approach to the stability of chemical reaction networks: piecewise linear in rates Lyapunov functions, IEEE Trans. Automat. Control, 61 (2016), 7689.
 15. F. Blanchini and G. Giordano, Piecewiselinear Lyapunov functions for structural stability of biochemical networks, Automatica J. IFAC, 50 (2014), 24822493.
 16. R. A. Horn and C. R. Johnson, Topics in matrix analysis, Cambridge University Press, Cambridge, 1991.
 17. L. Hogben (ed.), Handbook of linear algebra, 2nd edition, Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2014.
 18. B. L. Clarke, Stability of complex reaction networks, in Advances in Chemical Physics (eds. I. Prigogine and S. A. Rice), vol. 43, John Wiley & Sons, Ltd, 1980, 1215.
 19. M. Feinberg, Foundations of chemical reaction network theory, vol. 202 of Applied Mathematical Sciences, Springer, Cham, 2019.
 20. S. Müller, E. Feliu, G. Regensburger, C. Conradi, A. Shiu and A. Dickenstein, Sign conditions for injectivity of generalized polynomial maps with applications to chemical reaction networks and real algebraic geometry, Found. Comput. Math., 16 (2016), 6997.
 21. M. Banaji and C. Pantea, Some results on injectivity and multistationarity in chemical reaction networks, SIAM J. Appl. Dyn. Syst., 15 (2016), 807869.
 22. E. Feliu, S. Müller and G. Regensburger, Characterizing injectivity of classes of maps via classes of matrices, Linear Algebra Appl., 580 (2019), 236261.
 23. G. Teschl, Ordinary differential equations and dynamical systems, vol. 140 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2012.
 24. F. R. Gantmacher, The theory of matrices. Vols. 1, 2, Translated by K. A. Hirsch, Chelsea Publishing Co., New York, 1959.
 25. G. W. Cross, Three types of matrix stability, Linear Algebra Appl., 20 (1978), 253263.
 26. M. D. Johnston, Topics in chemical reaction network theory, PhD thesis, University of Waterloo, 2011.
 27. R. A. Brualdi and H. J. Ryser, Combinatorial matrix theory, Cambridge University Press, Cambridge, 1991.
 28. B. E. Cain, Real, 3×3, Dstable matrices, J. Res. Nat. Bur. Standards Sect. B, 80B (1976), 7577.
Reader Comments
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *