Citation: Wenlong Wang, Chunrui Zhang. Bifurcation of a feed forward neural network with delay and application in image contrast enhancement[J]. Mathematical Biosciences and Engineering, 2020, 17(1): 387-403. doi: 10.3934/mbe.2020021
[1] | M. Cohen and S. Grossberg, Absolute stability of global pattern formation and parallelmemory storage by competitive neural networks, IEEE T. Syst. Man. Cy-s., 13 (1983), 815-825. |
[2] | J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, P. Natl. Acad. Sci. USA, 81 (1984), 3088-3092. |
[3] | J. Wei and S. Ruan, Stability and bifurcation in a neural network model with two delays, Physica D, 130 (1999), 255-272. |
[4] | L. Li and Y. Yuan, Dynamics in three cells with multiple time delays, Nonlinear Anal-Real., 9 (2008), 725-746. |
[5] | C. Zhang, B. Zheng and L.Wang, Multiple Hopf bifurcations of symmetric BAM neural network model with delay, Appl. Math. Lett., 22 (2009), 616-622. |
[6] | Y. Song and J. Wei, Local Hopf bifurcation and global periodic solutions in a delayed predatorprey system, Math. Anal. Appl., 301 (2005), 1-21. |
[7] | T. Dong, X. Liao, T.Huang,et al., Hopf-pitchfork bifurcation in an inertial two- neuron system with time delay, Neurocomputing, 97 (2012), 223-232. |
[8] | C. Zhang, X. Zhang and Y. Zhang, Dynamic properties of feed-forward neural networks and application in contrast enhancement for image, CHAOS Soliton. Fract., 114 (2018), 281-290. |
[9] | A. Algaba, E. Freire, E. Gamero, et al., A tame degenerate Hopf-pitchfork bifurcation in a modified van der pol-duffing oscillator, Nonlinear Dyn., 22 (2000), 249-269. |
[10] | A. Algaba, E. Freire, E.Gamero, et al., A three-parameter study of a degenerate case of the Hopfpitchfork bifurcation, Nonlinearity, 12 (1999), 1177-1206. |
[11] | A. Algaba, E. Freire and E.Gamero, Hypernormal form for the Hopf-zero bifurcation, Int. J. Bifurcat. Chaos, 8 (2011), 18575-1887. |
[12] | J. Carr, Applications of centre manifold Theory, Springer-Verlag, New York, 1981. |
[13] | L. Li and Y. Yuan, Dynamics in three cells with multiple time delays, Nonlinear Anal-Real., 9 (2008), 725-746. |
[14] | J. S. W. Lamb, M. A. Teixeira and K. N. Webster, Heteroclinic bifurcations near Hopf-zero bifurcation in reversible vector fields in R3, J. Differ. Equations, 219 (2005), 78-115. |
[15] | H. Wang and J. Wang, Hopf-pitchfork bifurcation in a two-neuron system with discrete and distributed delays, Math. Method Appl. Sci., 38 (2015), 4967-4981. |
[16] | J. Wei and M. Li, Global existence of periodic solutions in a tri-neuron network model with delays, Physica D, 198 (2004), 106-119. |
[17] | X. Wu and L. Wang, Zero-Hopf bifurcation analysis in delayed differential equations with two delays, J. Franklin I., 354 (2017), 1484-1513. |
[18] | B. Zheng, H. Yin and C. Zhang, Equivariant Hopf-Pitchfork Bifurcation of Symmetric Coupled Neural Network with Delay, I. J. Bifurcation Chaos, 26 (2016), 11650205. |
[19] | N. J. McCullen, T. Mullin and M. Golubitsky, Sensitive Signal Detection Using a Feed-Forward Oscillator Network, Phys. Rev. lett., 98 (2007), 254101. |
[20] | Y. Qin, J. Wang, C. Men, et al., Vibrational resonance in feed-forward network, Chaos, 21 (2011), 023133. |
[21] | Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer-Verlag, New York, 1998. |
[22] | T. Faria and L. Magalhaes, Normal forms for retarded functional differential equation with parameters and applications to Hopf bifurcation, J. Differ. Equations, 122 (1995), 181-200. |