
Mathematical Biosciences and Engineering, 2019, 16(6): 83228355. doi: 10.3934/mbe.2019421
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Linear conjugacy of chemical kinetic systems
1 Institute of Mathematical Sciences and Physics, University of the Philippines Los Baños, Laguna, 4031, Philippines
2 Department of Mathematics, Mariano Marcos State University, Ilocos Norte, 2906 Philippines
3 Mathematics and Statistics Department, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
4 Max Planck Institute of Biochemistry, 85152 Martinsried, Germany
5 LMU Faculty of Physics, Geschwister SchollPlatz 1, 80539 Munich, Germany
Received: , Accepted: , Published:
Special Issues: Mathematical analysis of reaction networks: theoretical advances and applications
References
1. G. Craciun, F. Nazarov and C. Pantea Persistence and permanence of mass action and power law dynamical systems, SIAM J. Appl. Math., 73 (2013), 305329.
2. A. Sorribas, B. HernándezBermejo, E. Vilaprinyo, et al., Cooperativity and saturation in biochemical systems: a saturable formalism using Taylor series approximation, Biotechnol. Bioeng., 97 (2007), 12591277.
3. G. Craciun and C. Pantea, Identifiability of chemical reaction networks, J. Math. Chem., 44 (2008), 244259.
4. G. Farkas, Kinetic lumping schemes, Chem. Eng. Sci., 54 (1999), 39093915.
5. M. D. Johnston, D. Siegel and G. Szederkényi, Computing weakly reversible linearly conjugate networks with minimal deficiency, Math. Biosci., 241 (2013), 8898.
6. A. Gábor, K. M. Hangos, J. R. Banga, et al., Reaction network realizations of rational biochemical systems and their structural properties, J. Math. Chem., 53 (2015), 16571686.
7. M. J. Cortez, A. Nazareno and E. Mendoza, A computational approach to linear conjugacy in a class of power law kinetic systems, J. Math. Chem., 56 (2018), 336357.
8. C. P. Arceo, E. Jose, A. MarinSanguino, et al., Chemical reaction network approaches to biochemical systems theory, Math. Biosci., 269 (2015), 135152.
9. M. Feinberg and F. J. Horn, Chemical mechanism structure and the coincidence of the stoichiometric and kinetic subspaces, Arch. Ration. Mech. An., 66 (1977), 8397.
10. C. Wiuf and E. Feliu, Powerlaw kinetics and determinant criteria for the preclusion of multistationarity in networks of interacting species, SIAM J. Appl. Dyn. Syst., 12 (2013), 1685 1721.
11. E. Feliu and C. Wiuf, Preclusion of switch behavior in networks with massaction kinetics, Appl. Math. Comput., 219 (2012), 14491467
12. C. P. Arceo, E. Jose, A. Lao, et al., Reactant subspaces and kinetics of chemical reaction networks, J. Math. Chem., 56 (2018), 395422.
13. M. D. Johnston and D. Siegel, Linear conjugacy of chemical reaction networks, J. Math. Chem., 49 (2011), 12631282.
14. F. Brouers, The fractal (BSf) kinetic equations and its approximations, J. Modern Phys., 5 (2014), 15941601.
15. G. Shinar and M. Feinberg, Concordant chemical reaction networks, Math. Biosci., 240 (2012), 92113.
16. C. P. Arceo, E. Jose, A. Lao, et al., Reaction networks and kinetics of biochemical systems, Math. Biosci., 283 (2017), 1329.
17. S. Müller and G. Regensburger, Generalized mass action systems and positive solutions of polynomial equations with real and symbolic exponents (invited talk), In: Proceedings of the International Workshop on Computer Algebra in Scientific Computing, 2014 September, Springer, 8660, 302323.
18. N. Fortun, E. Mendoza, L. Razon, et al., A Deficiency Zero Theorem for a class of power law kinetic systems with nonreactant determined interactions, Commun. Math. Comput. Chem. (MATCH), 81 (2019), 621638.
19. B. Joshi and A. Shiu, Atoms of multistationarity in chemical reaction networks, J. Math. Chem., 51 (2013), 153178.
20. N. Fortun, E. Mendoza, L. Razon, et al., Multistationarity in earth's preindustrial carbon cycle models, Manila J. Sci., 11 (2018), 8196.
21. M. D. Johnston, Translated chemical reaction networks. Bull. Math. Biol., 76 (2014), 10811116.
22. D. A. Talabis, C. P. Arceo and E. Mendoza, Positive equilibria of a class of power law kinetics, J. Math. Chem., 56 (2018), 358394.
23. J. J. Heijnen, Approximative kinetic formats used in metabolic network modeling, Biotechnol. Bioeng., 91 (2005), 534545.
24. V. Hatzimanikatis and J. E. Bailey, MCA has more to say, J. Theor. Biol., 182 (1996), 233242.
25. M. D. Johnston, D. Siegel and G. Szederkényi, A linear programming approach to weak reversibility and linear conjugacy of chemical reaction networks, J. Math. Chem., 50 (2012), 274288.
26. A. Gábor, K. M. Hangos and G. Szederkényi, Linear conjugacy in biochemical reaction networks with rational reaction rates. J. Math. Chem., 54 (2016), 16581676.
27. M. D. Johnston, A linear programming approach to dynamical equivalence, linear conjugacy, and the deficiency one theorem, J. Math. Chem., 54 (2016), 16121631.
28. M. D. Johnston, A computational approach to steady state correspondence of regular and generalized mass action systems, Bull. Math. Biol., 77 (2015), 10651100.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)