
Mathematical Biosciences and Engineering, 2019, 16(6): 81958213. doi: 10.3934/mbe.2019414
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Signsensitivities for reaction networks: an algebraic approach
Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
Received: , Accepted: , Published:
Special Issues: Mathematical analysis of reaction networks: theoretical advances and applications
References
1. T. S. Gardner, D. di Bernardo, D. Lorenz, et al., Inferring genetic networks and identifying compound mode of action via expression profiling, Science, 301 (2003), 102–105.
2. A. F. Villaverde and J. R. Banga, Reverse engineering and identification in systems biology: strategies, perspectives and challenges, J. R. Soc. Interface, 11 (2014), 20130505.
3. S. Prabakaran, J. Gunawardena and E. Sontag, Paradoxical results in perturbationbased signaling network reconstruction, Biophys. J., 106 (2014), 2720–2728.
4. B. N. Kholodenko, A. Kiyatkin, F. J. Bruggeman, et al., Untangling the wires: a strategy to trace functional interactions in signaling and gene networks, Proc. Natl. Acad. Sci. U.S.A., 99 (2002), 12841–12846.
5. E. D. Sontag, A technique for determining the signs of sensitivities of steady states in chemical reaction networks, IET Syst. Biol., 8 (2014), 251–267.
6. A. Gupta and M. Khammash, An efficient and unbiased method for sensitivity analysis of stochastic reaction networks, J. R. S. Interface, 11 (2014), 20140979.
7. P. VeraLicona, A. Jarrah, L. D. GarciaPuente, et al., An algebrabased method for inferring gene regulatory networks, BMC Syst. Biol., 8 (2014), 37.
8. E. Feliu, M. Knudsen, L. N. Andersen, et al., An algebraic approach to signaling cascades with N layers, Bull. Math. Biol., 74 (2012), 45–72.
9. R. FritscheGuenther, F. Witzel, A. Sieber, et al., Strong negative feedback from Erk to Raf confers robustness to MAPK signalling, Mol. Syst. Biol., 7 (2011), 489.
10. T. Okada and A. Mochizuki, Sensitivity and network topology in chemical reaction systems, Phys. Rev. E., 96 (2017), 022322.
11. T. Okada and A. Mochizuki, Law of Localization in Chemical Reaction Networks, Phys. Rev. Lett., 117 (2016), 048101.
12. B. Brehm and B. Fiedler, Sensitivity of chemical reaction networks: A structural approach. 3. Regular multimolecular systems, Math. Methods Appl. Sciences, 41 (2018), 1344–1376.
13. G. Shinar, U. Alon and M. Feinberg, Sensitivity and robustness in chemical reaction networks, SIAM J. Appl. Math., 69 (2009), 977–998.
14. G. Shinar, A. Mayo, H. Ji, et al., Constraints on reciprocal flux sensitivities in biochemical reaction networks, Biophys. J., 100 (2011), 1383–1391.
15. C. Conradi, E. Feliu, M. Mincheva, et al., Identifying parameter regions for multistationarity, PLoS Comput. Biol., 13 (2017), e1005751.
16. S. Müller, E. Feliu, G. Regensburger, et al., Sign conditions for injectivity of generalized polynomial maps with applications to chemical reaction networks and real algebraic geometry, Found. Comput. Math., 16 (2016), 69–97.
17. J. Gunawardena, Chemical reaction network theory for insilico biologists, 2003. Available from: http://vcp.med.harvard.edu/papers/crnt.pdf.
18. M. Feinberg, Lectures on chemical reaction networks, 1980. Available from: http://www.crnt.osu.edu/LecturesOnReactionNetworks.
19. E. D. Sontag, Structure and stability of certain chemical networks and applications to the kinetic proofreading model of Tcell receptor signal transduction, Institute of Electrical and Electronics Engineers. Transactions on Automatic Control, 46 (2001), 1028–1047.
20. C. Wiuf and E. Feliu, Powerlaw kinetics and determinant criteria for the preclusion of multistationarity in networks of interacting species, SIAM J. Appl. Dyn. Syst., 12 (2013), 1685–1721.
21. A. Dickenstein, M. P. Millán, A. Shiu, et al., Multistationarity in Structured Reaction Networks, Bull. Math. Biol., 81 (2019), 1527–1581.
22. N. Obatake, A. Shiu, X. Tang, et al., Oscillations and bistability in a model of ERK regulation, J. Math. Biol., (2019), 1–35.
23. C. Conradi, M. Mincheva and A. Shiu, Emergence of oscillations in a mixedmechanism phosphorylation system, Bull. Math. Biol., 81 (2019), 1829–1852.
24. D. A. Fell, Metabolic control analysis: a survey of its theoretical and experimental development, Biochem. J., 286 (1992), 313–330.
25. J. Gunawardena, Notes on Metabolic Control Analysis, 2002. Available from: vcp.med. harvard.edu/papers/mca.pdf.
26. M. P. Millán and A. Dickenstein, The structure of MESSI biological systems, SIAM J. Appl. Dyn. Syst., 17 (2018), 1650–1682.
27. V. B. Kothamachu, E. Feliu, L. Cardelli, et al., Unlimited multistability and Boolean logic in microbial signalling, J. R. Soc. Interface, 12 (2015), 20150234.
28. A. Torres and E. Feliu, Symbolic proof of bistability in reaction networks, Submitted.
29. A. Baudier, F. Fages and S. Soliman, Graphical requirements for multistationarity in reaction networks and their verification in BioModels, J. Theor. Biol., 459 (2018), 79–89.
30. E. Feliu and C. Wiuf, A computational method to preclude multistationarity in networks of interacting species, Bioinformatics, 29 (2013), 2327–2334.
31. C. Conradi and M. Mincheva, Catalytic constants enable the emergence of bistability in dual phosphorylation, J. R. Soc. Interface, 11 (2014), 20140158.
32. L. Wang and E. D. Sontag, On the number of steady states in a multiple futile cycle, J. Math. Biol., 57 (2008), 29–52.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)