Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

A model of the cost of delaying treatment of Hashimotos thyroiditis: thyroid cancer initiation and growth

1 Department of Mathematics, University of Wisconsin-Whitewater, 800 W. Main Street, Whitewater, WI 53190-1790, USA;
2 Department of MSCS, Marquette University, WI 53201-1881, USA

Special Issues: Mathematical Models and Autoimmune Diseases

Hashimoto's thyroiditis (HT) is an autoimmune disorder that drives the function of thyroid gland to the sequential clinical states:euthyroidism (normal condition), subclinical hypothyroidism (asymptomatic period) and overt hypothyroidism (symptomatic period). In this disease, serum thyroidstimulating hormone (TSH) levels increase monotonically, stimulating the thyroid follicular cells chronically and initiating benign (non-cancerous) thyroid nodules at various sites of the thyroid gland. This process can also encourage growth of papillary thyroid microcarcinoma. Due to prolonged TSH stimulation, thyroid nodules may grow and become clinically relevant without the administration of treatment by thyroid hormone replacement. Papillary thyroid cancer (80% of thyroid cancer) whose incidence is increasing worldwide, is associated with Hashimoto's thyroiditis. A stochastic model is developed here to produce the statistical distribution of thyroid nodule sizes and growth by taking serum TSH value as the continuous input to the model using TSH values from the output of the patientspecific deterministic model developed for the clinical progression of Hashimoto's thyroiditis.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Hashimoto's thyroiditis; thyroid nodules; thyroid cancer; hypothyroidism; thyroid hormones; thyroid stimulating hormone

Citation: Balamurugan Pandiyan, Stephen J. Merrill. A model of the cost of delaying treatment of Hashimotos thyroiditis: thyroid cancer initiation and growth. Mathematical Biosciences and Engineering, 2019, 16(6): 8069-8091. doi: 10.3934/mbe.2019406

References

  • 1. L. E. Braverman and D. Cooper, Werner & Ingbar's The Thyroid:A Fundamental and Clinical Text, Lippincott Williams & Wilkins, 2012.
  • 2. V. D. Sarapura, M. H. Samuels and E. C. Ridgway, Thyroid-stimulating Hormone. IN:The Pituitary, S. Medmed (Ed.), Blackwell Science, Inc., Cambridge, MA, (1995), 187-229.
  • 3. R. R. Cavalieri and B. Rapoport, Impaired peripheral conversion of thyroxine to trhodothyronine, Ann. Rev. Med., 28 (1977), 57-65.
  • 4. L. Brunton, B. Chabner and B. Knollman, Goodman and Gilman's the pharmacological basis of therapeutics, McGraw-Hill New York, 2011.
  • 5. J. S. LoPresti, A. Eigen, E. Kaptein, et al., Alterations in 3, 3'5'-triiodothyronine metabolism in response to propylthiouracil, dexamethasone, and thyroxine administration in man, J. Clin. Invest., 84 (1989), 1650.
  • 6. Z. Baloch, P. Carayon, B. Conte-Devolx, et al., Laboratory medicine practice guidelines. Laboratory support for the diagnosis and monitoring of thyroid disease, Thyroid., 13 (2003), 3-126.    
  • 7. C. M. Dayan and G. H. Daniels, Chronic autoimmune thyroiditis, N. Engl. J. Med., 335 (1996), 99-107.
  • 8. B. Jankovic, K. T. Le and J. M. Hershman, Clinical Review:Hashimoto's thyroiditis and papillary thyroid carcinoma:is there a correlation?, J. Clin. Endocrinol. Metab., 98 (2013), 474-482.
  • 9. D. A. Chistiakov, Immunogenetics of Hashimoto's thyroiditis, J. Autoimmune. Dis., 2 (2005), 1.
  • 10. G. Reda, R. Cesareo, E. Lolli, et al., Thyroid cancer and Hashimoto's thyroiditis, Minerva. Chir., 52 (1997), 139-141.
  • 11. K. Boelaert, The association between serum tsh concentration and thyroid cancer, Endocr. Relat. Cancer., 16 (2009), 1065-1072.
  • 12. M. R. Haymart, S. L. Glinberg, J. Liu, et al., Higher serum tsh in thyroid cancer patients occurs independent of age and correlates with extrathyroidal extension, Clin. Endocrinol., 71 (2009), 434-439.
  • 13. D. S. McLeod, K. F. Watters, A. D. Carpenter, et al., Thyrotropin and thyroid cancer diagnosis:a systematic review and dose-response meta-analysis, J. Clin. Endocrinol. Metab., 97 (2012), 2682-2692.
  • 14. K. Boelaert, J. Horacek, R. L. Holder, et al., Serum thyrotropin concentration as a novel predictor of malignancy in thyroid nodules investigated by fine-needle aspiration, J. Clin. Endocrinol. Metab., 91 (2006), 4295-4301.
  • 15. N. Hu, Z. M. Li, J. F. Liu, et al., An overall and dose-response meta-analysis for thyrotropin and thyroid cancer risk by histological type, Oncotarget., 7 (2016), 47750-47759.
  • 16. J. Yang, V. Schnadig, R. Logrono, et al., Fine-needle aspiration of thyroid nodules:a study of 4703 patients with histologic and clinical correlations, Cancer Cytopathol., 111 (2007), 306-315.
  • 17. B. R. Haugen, 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer:What is new and what has changed?, Cancer, 123 (2017), 372-381.
  • 18. L. Hegedüs, Clinical practice. The thyroid nodule, N. Engl. J. Med., 351 (2004), 1764-1771.
  • 19. C. Durante, G. Costante, G. Lucisano, et al., The natural history of benign thyroid nodules, Jama, 313 (2015), 926-935.
  • 20. K. Asanuma, S. Kobayashi, K. Shingu, et al., The rate of tumour growth does not distinguish between malignant and benign thyroid nodules, Eur. J. Surg., 167 (2001), 102-105.
  • 21. D. S. McLeod, K. F. Watters, A. D. Carpenter, et al., Thyrotropin and thyroid cancer diagnosis:a systematic review and dose-response meta-analysis, J. Clin. Endocrinol. Metab., 97 (2012), 2682-2692.
  • 22. A. Brander, P. Viikinkoski, J. Tuuhea, et al., Clinical versus ultrasound examination of the thyroid gland in common clinical practice, J. Clin. Ultrasound., 20 (1992), 37-42.    
  • 23. H. Gharib and J. R. Goellner, Fine-needle aspiration biopsy of the thyroid:an appraisal, Ann. Intern. Med., 118 (1993), 282-289.
  • 24. L. Hegedus, Thyroid ultrasound, Endocrinol. Metab. Clin. North. Am., 30 (2001), 339-360.
  • 25. M. Rizzo, A. Sindoni, R. T. Rossi, et al., Annual increase in the frequency of papillary thyroid carcinoma as diagnosed by fine-needle aspiration at a cytology unit in sicily, Hormones (Athens), 12 (2013), 46-57.
  • 26. R. Vita, G. Leni, G. Tuccari, et al., The increasing prevalence of chronic lymphocytic thyroiditis in papillary microcarcinoma, Rev. Endocr. Metab. Disord., 19 (2018), 301-309.
  • 27. A. T. Franco, R. Malaguarnera, S. Refetoff, et al., Thyrotropin receptor signaling dependence of braf-induced thyroid tumor initiation in mice, Proc. Natl. Acad. Sci. USA, 108 (2011), 1615-1620.    
  • 28. A. Latina, D. Gullo, F. Trimarchi, et al., Hashimoto's thyroiditis:similar and dissimilar characteristics in neighboring areas. Possible implications for the epidemiology of thyroid cancer, PLoS One, 8 (2013), e55450.
  • 29. M. E. DAILEY, S. LINDSAY and R. SKAHEN, Relation of thyroid neoplasms to hashimoto disease of the thyroid gland, AMA Arch. Surg., 70 (1955), 291-297.
  • 30. C. Resende de Paiva, C. Grønhøj, U. Feldt-Rasmussen, et al., Association between hashimoto's thyroiditis and thyroid cancer in 64,628 patients, Front. Oncol., 7 (2017), 53.
  • 31. K. W. Kim, Y. J. Park, E. H. Kim, et al., Elevated risk of papillary thyroid cancer in Korean patients with Hashimoto's thyroiditis, Head Neck., 33 (2011), 691-695.
  • 32. S. K. Grebe and I. D. Hay, Follicular thyroid cancer, Endocrinol. Metab. Clin. North Am., 24 (1995), 761-801.
  • 33. S. Chiacchio, A. Lorenzoni, G. Boni, et al., Anaplastic thyroid cancer:prevalence, diagnosis and treatment., Minerva. Endocrinol., 33 (2008), 341-357.
  • 34. S. R. Petursson, Metastatic medullary thyroid carcinoma:Complete response to combination chemotherapy with dacarbazine and 5-fluorouracil, Cancer, 62 (1988), 1899-1903.
  • 35. J. L. Pasieka, Hashimoto's disease and thyroid lymphoma:role of the surgeon, World J. Surg., 24 (2000), 966-970.
  • 36. Cancer Statistics, 2018. Available from:https://seer.cancer.gov/statfacts/html/thyro.html,
  • 37. G. R. R. Lamooki, A. H. Shirazi and A. R. Mani, Dynamical model for thyroid, Commun. Nonlinear Sci., 22 (2015), 297-313.
  • 38. B. Pandiyan, S. J. Merrill and S. Benvenga, A patient-specific model of the negativefeedback control of the hypothalamus-pituitary-thyroid (HPT) axis in autoimmune (Hashimoto's) thyroiditis, Math. Med. Biol., 31 (2014), 226-258.
  • 39. B. Pandiyan, S. J. Merrill and S. Benvenga, A homoclinic orbit in a patient-specific model of hashimoto's thyroiditis, Differ. Equ. Dyn. Syst., (2016), 1-18.
  • 40. Medicines and Healthcare products Regulatory Agency, NIBSC, 2008. Available from:https://www.nibsc.org/products/brm_product_catalogue/detail_page.aspx?catid=94/674.
  • 41. Measurement unit converter, 2019. Available from:https://www.convertunits.com/info/kDa.
  • 42. G. Kleinau, L. Kalveram, J. Köhrle, et al., Minireview:insights into the structural and molecular consequences of the tsh-β mutation c105vfs114x, Mol. Endocrinol., 30 (2016), 954-964.
  • 43. B. Rapoport and S. M. McLachlan, Tsh receptor cleavage into subunits and shedding of the asubunit; a molecular and clinical perspective, Endocr. Rev., 1 (2015), 23-42.
  • 44. M. Tuncel, Thyroid stimulating hormone receptor, Mol. imaging Radionucl. Ther., 26 (2017), 87-91.
  • 45. M. Pinsky and S. Karlin, An introduction to stochastic modeling, Academic press, 2010.
  • 46. J. N. Weiss, The hill equation revisited:uses and misuses, FASEB J., 11 (1997), 835-841.
  • 47. S. Goutelle, M. Maurin, F. Rougier, et al., The hill equation:a review of its capabilities in pharmacological modelling, Fundam Clin. Pharmacol., 22 (2008), 633-648.
  • 48. J. Bocian-Sobkowska, L. Malendowicz and W. Wozniak, Morphometric studies on the development of human thyroid gland in early fetal life, Histol. Histopathol., 7 (1992), 415-420.
  • 49. J. Jeffreys, H. Depraetere, J. Sanders, et al., Characterization of the thyrotropin binding pocket, Thyroid., 12 (2002), 1051-1061.
  • 50. G. Vassart and J. E. Dumont, The thyrotropin receptor and the regulation of thyrocyte function and growth, Endocr. Rev., 13 (1992), 596-611.
  • 51. S. Y. Mon, G. Riedlinger, C. E. Abbott, et al., Cancer risk and clinicopathological characteristics of thyroid nodules harboring thyroid-stimulating hormone receptor gene mutations, Diagn. Cytopathol., 46 (2018), 369-377.
  • 52. S. Mariotti and P. Beck-Peccoz, Physiology of the hypothalamic-pituitary-thyroid axis, in Endotext[Internet], MDText. com, Inc., 2016.
  • 53. E. Fröhlich and R. Wahl, Thyroid autoimmunity:role of anti-thyroid antibodies in thyroid and extra-thyroidal diseases, Front. Immunol., 8 (2017), 521.

 

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved