
Mathematical Biosciences and Engineering, 2019, 16(6): 78837910. doi: 10.3934/mbe.2019396
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Hydrodynamic limits for kinetic flocking models of CuckerSmale type
1 Department of Mathematics, Imperial College London, London SW7 2AZ, UK
2 Aix Marseille Université, CNRS, Centrale Marseille, Institut de Mathématiques de Marseille, UMR 7373, Château Gombert 39 rue F. Joliot Curie, 13453 Marseille Cedex 13, France
Received: , Accepted: , Published:
Special Issues: Mathematical Methods in the Biosciences
References
1. P. Degond and S. Motsch, Continuum limit of selfdriven particles with orientation interaction, Math. Models Methods Appl. Sci., 18 (2008), 1193–1215.
2. M. Ballerini, N. Cabibbo, R. Candelier, et al., Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study, Proc. Natl. Acad. Sci. USA, 105 (2008), 1232–1237.
3. U. Lopez, J. Gautrais, I. D. Couzin, et al., From behavioural analyses to models of collective motion in fish schools, Interface Focus, 2 (2012), 693–707.
4. J. Buhl, D. J. T. Sumpter, I. D. Couzin, et al., From disorder to order in marching locusts, Science, 312 (2006), 1402–1406.
5. E. Bertin, M. Droz and G. Grégoire, Hydrodynamic equations for selfpropelled particles: Microscopic derivation and stability analysis, J. Phys. Math. Theor., 42 (2009), 445001.
6. H. Chaté, F. Ginelli, G. Grégoire, et al., Collective motion of selfpropelled particles interacting without cohesion, Phys. Rev. E, 77 (2008), 046113.
7. I. D. Couzin, J. Krause, N. R. Franks, et al., Effective leadership and decision making in animal groups on the move, Nature, 433 (2005), 513–516.
8. D. Saintillan and M. J. Shelley, Instabilities, pattern formation, and mixing in active suspensions, Phys. Fluids, 20 (2008), 123304.
9. J. Toner and Y. Tu, Longrange order in a twodimensional dynamical XY model: How birds fly together, Phys. Rev. Lett., 75 (1995), 4326–4329.
10. T. Vicsek, A. Czirok, E. BenJacob, et al., Novel type of phase transition in a system of selfdriven particles, Phys. Rev. Lett., 75 (1995), 1226–1229.
11. A. Bricard, J. B. Caussin, N. Desreumaux, et al., Emergence of macroscopic directed motion in populations of motile colloids, Nature, 503 (2013), 95.
12. A. Creppy, F. Plouraboué, O. Praud, et al., Symmetrybreaking phase transitions in highly concentrated semen, J. R. Soc. Interface, 13 (2016), 20160575.
13. D. L. Koch and G. Subramanian, Collective hydrodynamics of swimming microorganisms: Living fluids, Annu. Rev. Fluid Mech., 43 (2011), 637–659.
14. M. C. Marchetti, J. F. Joanny, S. Ramaswamy, et al, Hydrodynamics of soft active matter, Rev. Mod. Phys., 85 (2013), 1143–1188.
15. T. Vicsek and A. Zafeiris, Collective motion, Phys. Rep., 517 (2012), 71–140.
16. S. Motsch and E. Tadmor, Heterophilious dynamics enhances consensus, SIAM Rev., 56 (2014), 577–621.
17. J. A. Carrillo, M. Fornasier, G. Toscani, et al., Particle, kinetic and hydrodynamic models of swarming, Math. Model Collect. Behav. SocioEcon. Life Sci. (MSSET), (2010), 297–336.
18. T. Kolokolnikov, J. A. Carrillo, A. Bertozzi, et al., Emergent behaviour in multiparticle systems with nonlocal interactions, Phys. D, 260 (2013), 1–4.
19. F. Bolley, J. A. Cañizo and J. A. Carrillo, Stochastic meanfield limit: Nonlipschitz forces & swarming, Math. Models Methods Appl. Sci., 21 (2011), 2179–2210.
20. F. Bolley, J. A. Cañizo and J. A. Carrillo, Meanfield limit for the stochastic Vicsek model, Appl. Math. Lett., 25 (2012), 339–343.
21. W. Braun and K. Hepp, The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles, Comm. Math. Phys., 56 (1977), 101–113.
22. J. A. Cañizo, J. A. Carrillo and J. Rosado, A wellposedness theory in measures for some kinetic models of collective motion, Math. Models Methods Appl. Sci., 21 (2011), 515–539.
23. H. Neunzert, The Vlasov equation as a limit of Hamiltonian classical mechanical systems of interacting particles, Trans. Fluid Dyn., 18 (1977), 663–678.
24. R. Dobrushin, Vlasov equations, Funct. Anal. Appl., 13 (1979), 115–123.
25. S. Y. Ha, K. Lee and D. Levy, Emergence of timeasymptotic flocking in a stochastic CuckerSmale system, Commun. Math. Sci., 7 (2009), 453–469.
26. J. A. Carrillo, Y. P. Choi and M. Hauray, The derivation of swarming models: Meanfield limit and Wasserstein distances, Collect. Dyn. Bact. Crowds, 553 (2014), 1–46.
27. J. A. Carrillo, Y. P. Choi, M. Hauray, et al., Meanfield limit for collective behavior models with sharp sensitivity regions, J. Eur. Math. Soc., 21 (2019), 121–161.
28. P. Degond, G Dimarco, T. B. N. Mac, et al., Macroscopic models of collective motion with repulsion, Comm. Math. Sci., 13 (2015), 1615–1638.
29. P. Degond, A. Manhart and H. Yu, A continuum model for nematic alignment of selfpropelled particles, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1295–1327.
30. P. Degond, S. MerinoAceituno, F. Vergnet, et al., Coupled selforganized hydrodynamics and stokes models for suspensions of active particles, J. Math. Fluid Mech., 21 (2019), 6.
31. P. Degond, A. Frouvelle, S. MerinoAceituno, et al., Quaternions in collective dynamics, Multiscale Model Simul., 16 (2018), 28–77.
32. M. R. D'Orsogna, Y. L. Chuang, A. L. Bertozzi, et al., Selfpropelled particles with softcore interactions: Patterns, stability and collapse, Phys. Rev. Lett., 96 (2006), 104302–1/4.
33. Y. L. Chuang, Y. R. Huang, M. R. D'Orsogna, et al., Multivehicle flocking: Scalability of cooperative control algorithms using pairwise potentials, IEEE Int. Conf. Rob. Autom., (2007), 2292–2299.
34. Y. L. Chuang, M. R. D'Orsogna, D. Marthaler, et al., State transitions and the continuum limit for a 2D interacting, selfpropelled particle system, Phys. D, 232 (2007), 33–47.
35. J. A. Carrillo, M. R. D'Orsogna and V. Panferov, Double milling in a selfpropelled swarms from kinetic theory, Kinet. Relat. Models, 2 (2009), 363–378.
36. J. A. Carrillo, A. Klar, S. Martin, et al., Selfpropelled interacting particle systems with roosting force, Math. Models Methods Appl. Sci., 20 (2010), 1533–1552.
37. A. B. T. Barbaro and P. Degond, Phase transition and diffusion among socially interacting selfpropelled agents, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1249–1278.
38. A. B. T. Barbaro, J. A. Cañizo, J. A. Carrillo, et al., Phase transitions in a kinetic flocking model of CuckerSmale type, Multiscale Model Simul., 14 (2016), 1063–1088.
39. F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Autom. Control, 52 (2007), 852–862.
40. S. Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, 1 (2008), 415–435.
41. S. Y. Ha and J. G. Liu, A simple proof of the CuckerSmale flocking dynamics and meanfield limit, Commun. Math. Sci., 7 (2009), 297–325.
42. J. A. Carrillo, M. Fornasier, J. Rosado, et al., Asymptotic flocking dynamics for the kinetic CuckerSmale model, SIAM J. Math. Anal., 42 (2010), 218–236.
43. S. Motsch and E. Tadmor, A new model for selforganized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), 923–947.
44. A. Frouvelle and J. G. Liu, Dynamics in a kinetic model of oriented particles with phase transition, SIAM J. Math. Anal., 44 (2012), 791–826.
45. P. Degond, A. Frouvelle and J. G. Liu, Macroscopic limits and phase transition in a system of selfpropelled particles, J. Nonlinear Sci., 23 (2013), 427–456.
46. P. Degond, A. Frouvelle and J. G. Liu, Phase transitions, hysteresis, and hyperbolicity for selforganized alignment dynamics, Arch. Ration. Mech. Anal., 216 (2015), 63–115.
47. M. Bostan and J. A. Carrillo, Asymptotic fixedspeed reduced dynamics for kinetic equations in swarming, Math. Models Methods Appl. Sci., 23 (2013), 2353–2393.
48. M. Bostan and J. A. Carrillo, Reduced fluid models for selfpropelled populations, interacting through alignment, Math. Models Methods Appl. Sci., 27 (2017), 1255–1299.
49. M. Bostan, The VlasovPoisson system with strong external magnetic field. Finite Larmor radius regime, Asymptot. Anal., 61 (2009), 91–123.
50. M. Bostan, Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics, J. Differ. Eq., 249 (2010), 1620–1663.
51. M. Bostan, Gyrokinetic Vlasov equation in three dimensional setting. Second order approximation, SIAM J. Multiscale Model. Simul., 8 (2010), 1923–1957.
52. V. BonnaillieNoël, J. A. Carrillo, T. Goudon, et al., Efficient numerical calculation of drift and diffusion coefficients in the diffusion approximation of kinetic equations, IMA J. Numer. Anal., 36 (2016), 1–34.
53. M. Reed and B. Simon, Methods of modern mathematical physics: IV analysis of operators, Academic Press, 1980.
54. C. Bardos, F. Golse and D. Levermore, Fluid dynamic limits of kinetic equations. I. formal derivations, J. Stat. Phys., 63 (1991), 323–344.
55. C. Bardos, F. Golse and D. Levermore, Fluid dynamic limits of kinetic equations II convergence proofs for the Boltzmann equation. Comm. Pure Appl. Math., 46 (1993), 667–753.
56. M. Bostan, On the Boltzmann equation for charged particle beams under the effect of strong magnetic fields, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 339–371.
57. M. Bostan, High magnetic field equilibria for the FokkerPlanckLandau equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 899–931.
58. D. Levermore, Entropic convergence and the linearized limit for the Boltzmann equation, Commun. Part. Diff. Eq., 18 (1993), 1231–1248.
59. D. Levermore, Moment closure hierarchies for kinetic theories, J. Stat. Phys., 83 (1996), 1021–1065.
60. A. Frouvelle, A continuum model for alignment of selfpropelled particles with anisotropy and densitydependent parameters, Math. Models Methods Appl. Sci., 22 (2012), 1250011.
61. P. D. Miller, Applied asymptotic analysis, American Mathematical Society, 2006.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)