
Mathematical Biosciences and Engineering, 2019, 16(6): 78507882. doi: 10.3934/mbe.2019395
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Mathematical analysis of an agestructured HIV1 infection model with CTL immune response
1 Complex Systems Research Center, Shanxi University, Taiyuan 030006, Shanxi, China
2 Institute of Applied Mathematics, Army Engineering University, Shijiazhuang 050003, Hebei, China
Received: , Accepted: , Published:
References
1. H. D. Kwon, Optimal treatment strategies derived from a HIV model with drugresistant mutants, Appl. Math. Comput., 188 (2007), 1193–1204.
2. S. Bonhoeffer, R. M. May, G. M. Shaw, et al., Virus dynamics and drug therapy, Proc. Natl. Acad. Sci. USA, 94 (1997), 6971–6976.
3. D. D. Ho, A. U. Neumann, A. S. Perelson, et al., Rapid turnover of plasma virions and CD4^{+} lymphocytes in HIV1 infection, Nature, 373 (1995), 123–126.
4. M. A. Nowak, R. M. Anderson, M. C. Boerlijst, et al., HIV1 evolution and disease progression, Science, 274 (1996), 1008–1011.
5. M. A. Nowak, S. Bonhoeffer, G. M. Shaw, et al., Antiviral drug treatment: Dynamics of resistance in free virus and infected cell populations, J. Theor. Biol., 184 (1997), 203–217.
6. A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV1 dynamics in vivo, SIAM Rev., 41 (1999), 3–44.
7. A. S. Perelson, D. E. Kirschner and R. De Boer, Dynamics of HIV infection of CD4^{+}T cells, Math. Biosci., 114 (1993), 81–125.
8. A. S. Perelson, A. U. Neumann, M. Markowitz, et al., HIV1 dynamics in vivo: Virion clearance rate, infected cell lifespan, and viral generation time, Science, 271 (1996), 1582–1586.
9. P. W. Nelson, M. A. Gilchrist, D. Coombs, et al., An agestructured model of HIV infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells, Math. Biosci. Eng., 1 (2004), 267–288.
10. G. Huang, X. Liu and Y. Takeuchi, Lyapunov functions and global stability for agestructured HIV infection model, SIAM J. Appl. Math., 72 (2012), 25–38.
11. L. Rong, Z. Feng and A. S. Perelson, Mathematical analysis of agestructured HIV1 dynamics with combination antiretroviral therapy, SIAM J. Appl. Math., 67 (2007), 731–756.
12. R. Xu, X. Tian and S. Zhang, An agestructured withinhost HIV1 infection model with virustocell and celltocell transmissions, J. Biol. Dyn., 12 (2017), 89–117.
13. G. W. Suryawanshi and A. Hoffmann, A multiscale mathematical modeling framework to investigate antiviral therapeutic opportunities in targeting HIV1 accessory proteins, J. Theor. Biol., 386 (2015), 89–104.
14. J. Xu, Y. Geng and Y. Zhou, Global dynamics for an agestructured HIV virus infection model with cellular infection and antiretroviral therapy, Appl. Math. Comput., 305 (2017), 62–83.
15. J. Wang, J. Lang and X. Zou, Analysis of an age structured HIV infection model with virustocell infection and celltocell transmission, Nonlinear Anal. RWA, 34 (2017), 75–96.
16. J. Wang, R. Zhang and T. Kuniya, Global dynamics for a class of ageinfection HIV models with nonlinear infection rate, J. Math. Anal. Appl., 432 (2015), 289–313.
17. A. Alshorman, C. Samarasinghe, W. Lu, et al., An HIV model with agestructured latently infected cells, J. Biol. Dyn., 11 (2017), 192–215.
18. Z. Liu and Z. Li, Molecular imaging in tracking tumorspecific cytotoxic T lymphocytes (CTLs), Theranostics, 4 (2014), 990–1001.
19. P. K. Roy and A. N. Chatterjee, Tcell proliferation in a mathematical model of CTL activity through HIV1 infection, Proc. World Congr. Eng., 1 (2010), 1–6.
20. J. Cao, J. McNevin, S. Holte, et al., Comprehensive analysis of human immunodeficiency virus type 1 (HIV1)specific gamma interferonsecreting CD8 + T cells in primary HIV1 infection, J. Virol., 77 (2003), 6867–6878.
21. C. Browne, Immune response in virus model structured by cell infectionage, Math. Biosci. Eng., 13 (2016), 887–909.
22. J. Pang, J. Chen, Z. Liu, et al., Local and global stabilities of a viral dynamics model with infectionage and immune response, J. Dyn. Differ. Equ., 31 (2019), 793–813.
23. R. R. Regoes, D. Ebert and S. Bonhoeffer, Dosedependent infection rates of parasites produce the Allee effect in epidemiology, Proc. R. Soc. London B, 269 (2002), 271–279.
24. M. Iannelli, Mathematical Theory of AgeStructured Population Dynamics, Applied Mathematics Monographs, 7, Consiglio Nazionale delle Ricerche (C.N.R), Giardini Pisa, 1995, comitato nazionale per le scienze matematiche.
25. G. Webb, Theory of Nonlinear AgeDependent Population Dynamics, Marcel Dekker, New York, 1985.
26. H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, American Mathematical Society, Providence, 2011.
27. J. Yang, R. Xu and X. Luo, Dynamical analysis of an agestructured multigroup SIVS epidemic model, Math. Biosci. Eng., 16 (2019), 636–666.
28. D. Burg, L. Rong, A. U. Neumann, et al., Mathematical modeling of viral kinetics under immune control during primary HIV1infection, J. Theor. Biol., 259 (2009), 751–759.
29. N. M. Dixit and A. S. Perelson, Complex patterns of viral load decay under antiretroviral therapy: Influence of pharmacokinetics and intracellular delay, J. Theor. Biol., 226 (2004), 95–109.
30. M. Markowitz, M. Louie, A. Hurley, et al., A novel antiviral intervention results in more accurate assessment of human immunodeficiency virus type 1 replication dynamics and tcell decay in vivo, J. Virol., 77 (2003), 5037–5038.
31. B. Ramratnam, S. Bonhoeffer, J. Binley, et al., Rapid production and clearance of HIV1 and hepatitis C virus assessed by large volume plasma apheresis, Lancet, 354 (1999), 1782–1785.
32. J. Wang, M. Guo, X Liu, et al., Threshold dynamics of HIV1 virus model with celltocell transmission, cellmediated immune responses and distributed delay, Appl. Math. Comput., 291 (2016), 149–161.
33. X. Zhou and J. Cui, Global stability of the viral dynamics with CrowleyMartin functional response, Bull. Korean Math. Soc., 48 (2011), 555–574.
34. M. Iannelli and F. Milner, The Basic Approach to AgeStructured Population Dynamics: Models, Methods and Numerics, Springer, 2017.
35. J. K. Hale and P. Waltman, Persistence in infinitedimensional systems, SIAM J. Math. Anal., 20 (1989), 388–395.
36. P. Magal, Compact attractors for time periodic agestructured population models, Electron. J. Differ. Equ., 65 (2001), 1–35.
37. P. Magal, C. C. McCluskey and G. F. Webb, Lyapunov functional and global asymptotic stability for an infectionage model, Appl. Anal., 89 (2010), 1109–1140.
38. R. Xu, X. Tian and F. Zhang, Global dynamics of a tuberculosis transmission model with age of infection and incomplete treatment, Adv. Differ. Equ., 242 (2017), 1–34.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)