Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Mathematical analysis of an age-structured HIV-1 infection model with CTL immune response

1 Complex Systems Research Center, Shanxi University, Taiyuan 030006, Shanxi, China
2 Institute of Applied Mathematics, Army Engineering University, Shijiazhuang 050003, Hebei, China

In this paper, an age-structured HIV-1 infection model with CTL immune response is investigated. In the model, we consider the infection age (i.e. the time that has elapsed since an HIV virion has penetrated the cell) of infected $T$ cells. The asymptotic smoothness of the semi-flow generated by the system is established. By calculation, the immune-inactivated reproduction rate $\mathscr{R}_0$ and the immune-activated reproduction rate $\mathscr{R}_1$ are obtained. By analyzing the corresponding characteristic equations, the local stability of an infection-free steady state and a CTL-inactivated infection steady state of the model is established. By using the persistence theory for infinite dimensional system, the uniform persistence of the system is established when $\mathscr{R}_1>1$. By means of suitable Lyapunov functionals and LaSalle's invariance principle, it is shown that if $\mathscr{R}_0<1$, the infection-free steady state is globally asymptotically stable; if $\mathscr{R}_1<1< \mathscr{R}_0$, sufficient conditions are derived for the global stability of the CTL-inactivated infection steady state; if $\mathscr{R}_1>1$, sufficient conditions are obtained for the global attractivity of the CTL-activated infection steady state. Numerical simulations are carried out to illustrate the feasibility of the theoretical results.
  Article Metrics

Keywords infection age; CTL immune response; persistence; Lyapunov functional; stability

Citation: Xiaohong Tian, Rui Xu, Jiazhe Lin. Mathematical analysis of an age-structured HIV-1 infection model with CTL immune response. Mathematical Biosciences and Engineering, 2019, 16(6): 7850-7882. doi: 10.3934/mbe.2019395


  • 1. H. D. Kwon, Optimal treatment strategies derived from a HIV model with drug-resistant mutants, Appl. Math. Comput., 188 (2007), 1193–1204.
  • 2. S. Bonhoeffer, R. M. May, G. M. Shaw, et al., Virus dynamics and drug therapy, Proc. Natl. Acad. Sci. USA, 94 (1997), 6971–6976.
  • 3. D. D. Ho, A. U. Neumann, A. S. Perelson, et al., Rapid turnover of plasma virions and CD4+ lymphocytes in HIV-1 infection, Nature, 373 (1995), 123–126.
  • 4. M. A. Nowak, R. M. Anderson, M. C. Boerlijst, et al., HIV-1 evolution and disease progression, Science, 274 (1996), 1008–1011.
  • 5. M. A. Nowak, S. Bonhoeffer, G. M. Shaw, et al., Anti-viral drug treatment: Dynamics of resistance in free virus and infected cell populations, J. Theor. Biol., 184 (1997), 203–217.
  • 6. A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41 (1999), 3–44.
  • 7. A. S. Perelson, D. E. Kirschner and R. De Boer, Dynamics of HIV infection of CD4+T cells, Math. Biosci., 114 (1993), 81–125.
  • 8. A. S. Perelson, A. U. Neumann, M. Markowitz, et al., HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time, Science, 271 (1996), 1582–1586.
  • 9. P. W. Nelson, M. A. Gilchrist, D. Coombs, et al., An age-structured model of HIV infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells, Math. Biosci. Eng., 1 (2004), 267–288.
  • 10. G. Huang, X. Liu and Y. Takeuchi, Lyapunov functions and global stability for age-structured HIV infection model, SIAM J. Appl. Math., 72 (2012), 25–38.
  • 11. L. Rong, Z. Feng and A. S. Perelson, Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy, SIAM J. Appl. Math., 67 (2007), 731–756.
  • 12. R. Xu, X. Tian and S. Zhang, An age-structured within-host HIV-1 infection model with virus-to-cell and cell-to-cell transmissions, J. Biol. Dyn., 12 (2017), 89–117.
  • 13. G. W. Suryawanshi and A. Hoffmann, A multi-scale mathematical modeling framework to investigate anti-viral therapeutic opportunities in targeting HIV-1 accessory proteins, J. Theor. Biol., 386 (2015), 89–104.
  • 14. J. Xu, Y. Geng and Y. Zhou, Global dynamics for an age-structured HIV virus infection model with cellular infection and antiretroviral therapy, Appl. Math. Comput., 305 (2017), 62–83.
  • 15. J. Wang, J. Lang and X. Zou, Analysis of an age structured HIV infection model with virus-to-cell infection and cell-to-cell transmission, Nonlinear Anal. RWA, 34 (2017), 75–96.
  • 16. J. Wang, R. Zhang and T. Kuniya, Global dynamics for a class of age-infection HIV models with nonlinear infection rate, J. Math. Anal. Appl., 432 (2015), 289–313.
  • 17. A. Alshorman, C. Samarasinghe, W. Lu, et al., An HIV model with age-structured latently infected cells, J. Biol. Dyn., 11 (2017), 192–215.
  • 18. Z. Liu and Z. Li, Molecular imaging in tracking tumor-specific cytotoxic T lymphocytes (CTLs), Theranostics, 4 (2014), 990–1001.
  • 19. P. K. Roy and A. N. Chatterjee, T-cell proliferation in a mathematical model of CTL activity through HIV-1 infection, Proc. World Congr. Eng., 1 (2010), 1–6.
  • 20. J. Cao, J. McNevin, S. Holte, et al., Comprehensive analysis of human immunodeficiency virus type 1 (HIV-1)-specific gamma interferon-secreting CD8 + T cells in primary HIV-1 infection, J. Virol., 77 (2003), 6867–6878.
  • 21. C. Browne, Immune response in virus model structured by cell infection-age, Math. Biosci. Eng., 13 (2016), 887–909.
  • 22. J. Pang, J. Chen, Z. Liu, et al., Local and global stabilities of a viral dynamics model with infection-age and immune response, J. Dyn. Differ. Equ., 31 (2019), 793–813.
  • 23. R. R. Regoes, D. Ebert and S. Bonhoeffer, Dose-dependent infection rates of parasites produce the Allee effect in epidemiology, Proc. R. Soc. London B, 269 (2002), 271–279.
  • 24. M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Applied Mathematics Monographs, 7, Consiglio Nazionale delle Ricerche (C.N.R), Giardini Pisa, 1995, comitato nazionale per le scienze matematiche.
  • 25. G. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New York, 1985.
  • 26. H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, American Mathematical Society, Providence, 2011.
  • 27. J. Yang, R. Xu and X. Luo, Dynamical analysis of an age-structured multi-group SIVS epidemic model, Math. Biosci. Eng., 16 (2019), 636–666.
  • 28. D. Burg, L. Rong, A. U. Neumann, et al., Mathematical modeling of viral kinetics under immune control during primary HIV-1infection, J. Theor. Biol., 259 (2009), 751–759.
  • 29. N. M. Dixit and A. S. Perelson, Complex patterns of viral load decay under antiretroviral therapy: Influence of pharmacokinetics and intracellular delay, J. Theor. Biol., 226 (2004), 95–109.
  • 30. M. Markowitz, M. Louie, A. Hurley, et al., A novel antiviral intervention results in more accurate assessment of human immunodeficiency virus type 1 replication dynamics and t-cell decay in vivo, J. Virol., 77 (2003), 5037–5038.
  • 31. B. Ramratnam, S. Bonhoeffer, J. Binley, et al., Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis, Lancet, 354 (1999), 1782–1785.
  • 32. J. Wang, M. Guo, X Liu, et al., Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune responses and distributed delay, Appl. Math. Comput., 291 (2016), 149–161.
  • 33. X. Zhou and J. Cui, Global stability of the viral dynamics with Crowley-Martin functional response, Bull. Korean Math. Soc., 48 (2011), 555–574.
  • 34. M. Iannelli and F. Milner, The Basic Approach to Age-Structured Population Dynamics: Models, Methods and Numerics, Springer, 2017.
  • 35. J. K. Hale and P. Waltman, Persistence in infinite-dimensional systems, SIAM J. Math. Anal., 20 (1989), 388–395.
  • 36. P. Magal, Compact attractors for time periodic age-structured population models, Electron. J. Differ. Equ., 65 (2001), 1–35.
  • 37. P. Magal, C. C. McCluskey and G. F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, Appl. Anal., 89 (2010), 1109–1140.
  • 38. R. Xu, X. Tian and F. Zhang, Global dynamics of a tuberculosis transmission model with age of infection and incomplete treatment, Adv. Differ. Equ., 242 (2017), 1–34.


Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved