Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Fully Bayesian analysis of allele-specific RNA-seq data

1 Instituto de Estadística, Universidad de la República, Montevideo, Uruguay
2 Department of Statistics, Iowa State University, Iowa, IA 50010, USA

Special Issues: Recent Advancements on Quantitative Methods for Genomics and Genetics

Diploid organisms have two copies of each gene, called alleles, that can be separately transcribed. The RNA abundance associated to any particular allele is known as allele-specific expression (ASE). When two alleles have polymorphisms in transcribed regions, ASE can be studied using RNA-seq read count data. ASE has characteristics different from the regular RNA-seq expression: ASE cannot be assessed for every gene, measures of ASE can be biased towards one of the alleles (reference allele), and ASE provides two measures of expression for a single gene for each biological samples with leads to additional complications for single-gene models. We present statistical methods for modeling ASE and detecting genes with differential allelic expression. We propose a hierarchical, overdispersed, count regression model to deal with ASE counts. The model accommodates gene-specific overdispersion, has an internal measure of the reference allele bias, and uses random effects to model the gene-specific regression parameters. Fully Bayesian inference is obtained using the fbseq package that implements a parallel strategy to make the computational times reasonable. Simulation and real data analysis suggest the proposed model is a practical and powerful tool for the study of differential ASE.
  Figure/Table
  Supplementary
  Article Metrics
Download full text in PDF

Export Citation

Article outline

Copyright © AIMS Press All Rights Reserved