
Mathematical Biosciences and Engineering, 2019, 16(6): 76887706. doi: 10.3934/mbe.2019385
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Dynamic analysis of wild and sterile mosquito release model with Poincaré map
1 College of Mathematics and System Sciences, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
2 College of Foreign Languages, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
Received: , Accepted: , Published:
Special Issues: Mathematical Modeling of MosquitoBorne Diseases
References
1. K. Ciesielski, On stability in impulsive dynamical systems, B. Pol. Acad. Sci. Math., 52 (2010), 81–91.
2. Z. Shi, Y. Li and H. Cheng, Dynamic analysis of a pest management smith model with impulsive state feedback control and continuous delay, Mathematics , 7 (2019), 591.
3. T. Zhang, X. Liu, X. Meng, et al., Spatiotemporal dynamics near the steady state of a planktonic system, Comput. Math. Appl., 75 (2018), 4490–4504.
4. Y. Li, H. Cheng, J. Wang, et al., Dynamic analysis of unilateral diffusion Gompertz model with impulsive control strategy, Adv. Differ. Equ., 2018 (2018), 32.
5. J. Wang, H. Cheng, H. Liu, et al., Periodic solution and control optimization of a preypredator model with two types of harvesting, Adv. Differ. Equ., 2018 (2018), 1687–1847.
6. N. Gao, Y. Song, X. Wang, et al., Dynamics of a stochastic SIS epidemic model with nonlinear incidence rates, Adv. Differ. Equ., 2019 (2019), 41.
7. Y. Li, H. Cheng and Y. Wang, A Lycaon pictus impulsive state feedback control model with Allee effect and continuous time delay, Adv. Differ. Equ., 2018 (2018), 1687–1847.
8. L. Zhang, Y. Wang, M. Khalique, et al., Peakon and cuspon solutions of a generalized CamassaHolmNovikov equation, J. Appl. Anal. Comput., 8 (2018).
9. Z. Shi, J. Wang, Q. Li, et al., Control optimization and homoclinic bifurcation of a preyCpredator model with ratiodependent, Adv. Differ. Equ., 7 (2019), 591.
10. K. Liu, T. Zhang and L. Chen, Statedependent pulse caccination and therapeutic strategy SI epidemic model with nonlinear incidence rate, Comput. Math. Method. M., 2019 (2019), 10.
11. W. Lv and F. Wang, Adaptive tracking control for a class of uncertain nonlinear systems with infinite number of actuator failures using neural networks, Adv. Differ. Equ., 2017 (2017), 374.
12. H. Liu and H. Cheng, Dynamic analysis of a preypredator model with statedependent control strategy and square root response function, Adv. Differ. Equ., 2018 (2018), 63.
13. F. Wang, B. Chen, Y. Sun, et al., Finite time control of switched stochastic nonlinear systems, Fuzzy Set. Syst., 365 (2019), 140–152.
14. X. Meng, F. Li and S. Gao, Global analysis and numerical simulations of a novel stochastic ecoepidemiological model with time delay, Appl. Math. Comput., 339 (2018), 701–726.
15. Y. Ren, M. Tao, H. Dong, et al., Analytical research of ( 3 + 1 )dimensional Rossby waves with dissipation effect in cylindrical coordinate based on Lie symmetry approach, Adv. Differ. Equ., 9 (2019), 13.
16. J. Wang, H. Cheng, X. Meng, et al., Geometrical analysis and control optimization of a predatorprey model with multi statedependent impulse, Adv. Differ. Equ., 2017 (2017), 252.
17. Y. Li, Y. Li, Y. Liu, et al., Stability analysis and control optimization of a preypredator model with linear feedback control, Discrete Dyn. Nat. Soc., 2018 (2018), 12.
18. G. Liu, X. Wang and X. Meng, Extinction and persistence in mean of a novel delay impulsive stochastic infected predatorprey system with jumps, Complexity, 2017 (2017), 115.
19. F. Wang and X. Zhang, Adaptive finite time control of nonlinear systems under timevarying actuator failures, IEEE T. Syst., (2019).
20. J. Li, L. Cai and Y. Li, Stagestructured wild and sterile mosquito population models and their dynamics, J. Biol. Dynam., 11 (2016), 1.
21. W.Mylene, L.Georges, M.Knud, etal., Comparativegenomics: Insecticideresistanceinmosquito vectors, Nature, 423 (2003), 136–7.
22. L. Zhang and M. Khalique, Classification and bifurcation of a class of secondorder ODEs and its application to nonlinear PDEs, Discrete Cont. Dyn. S, 11 (2017), 777–790.
23. F, Liu, Continuity and approximate differentiability of multisublinear fractional maximal functions, Math. Inequal. Appl., 21 (2018), 25–40.
24. P. Stiling, Biological control by natural enemies, Ecology, 73 (1992), 1520–1520.
25. A. C. Redfield, The biological control of chemical factors in the environment, Sci Prog, 11 (1960), 150–170.
26. Y. Li and X. Liu, Hindex for nonlinear stochastic systems with state and input dependent noises, Int. J. Fuzzy Syst., 20 (2018), 759–768.
27. F. Zhu, X. Meng and T. Zhang, Optimal harvesting of a competitive nspecies stochastic model with delayed diffusions, Math. Biosci. Eng., 16 (2019), 1554–1574.
28. L. Marshall, J. W. Miles and A. Press, Integrated mosquito control methodologies, (1983).
29. H. J. Barclay, Models for the sterile insect release method with the concurrent release of pesticides, Ecol. Model., 11 (1980), 167–177.
30. Y. Li and X. Meng, Dynamics of an impulsive stochastic nonautonomous chemostat model with two different growth rates in a polluted environment, Discrete Dyn. Nat. Soc., 2019 (2019), 15.
31. Y. Liu, H. Dong and Y. Zhang, Solutions of a discrete integrable hierarchy by straightening out of its continuous and discrete constrained flows, Anal. Math. Phys., 2 (2018), 1–17.
32. W. Klassen, C. F. Curtis, W. Klassen, et al., Sterile Insect Technique, (1989).
33. M. Q. Benedict and A. S. Robinson, The first releases of transgenic mosquitoes: an argument for the sterile insect technique, Trends Parasitol., 19 (2003), 349–355.
34. F. Liu, Q. Xue and K. Yabuta, Rough maximal singular integral and maximal operators supported by subvarieties on TriebelLizorkin spaces, Nonlinear Anal., 171 (2018), 41–72.
35. T. Feng, Z. Qiu, X Meng, et al., Analysis of a stochastic HIV1 infection model with degenerate diffusion, Appl. Math. Comput., 348 (2019), 437–455.
36. L. Alphey, M. Benedict, R. Bellini, et al., Sterileinsect methods for control of mosquitoborne diseases: an analysis, Vector Borne Zoonot. Dis, 10 (2010), 295–311.
37. Y. Li, W. Zhang and X.Liu, Hindex for discretetime stochastic systems with Markovian jump and multiplicative noise, Automatica, 90 (2018), 286–293.
38. L. Zhang, Y. Wang, M. Khalique, et al., Peakon and cuspon solutions of a generalized CamassaHolmNovikov equation, J. Appl. Anal. Comput., 8 (2018), 1938–1958.
39. J. Li and Z. Yuan, Modelling releases of sterile mosquitoes with different strategies, J. Biol. Dyn., 9 (2015), 1–14.
40. H. Barclay and M. Mackauer, The sterile insect release method for pest control: a densitydependent model, Environ. Entomol., 9 (1980), 810–817.
41. F. Wang, B. Chen, Y. Sun, et al., Finite time control of switched stochastic nonlinear systems, Fuzzy Set. Syst., (2018).
42. H. Qi, X. Leng, X. Meng, et al., Periodic Solution and Ergodic Stationary Distribution of SEIS Dynamical Systems with Active and Latent Patients, Qual. Theory Dyn. Syst., 18 (2019).
43. M. Huang, X. Song and J. Li, Modelling and analysis of impulsive releases of sterile mosquitoes, J. Biol. Dynam., 11 (2017), 1147.
44. J. C. Panetta, A mathematical model of periodically pulsed chemotherapy: Tumor recurrence and metastasis in a competitive environment, B. Math. Biol., 58 (1996), 425–447.
45. S. Tang, B. Tang, A. Wang, et al., Holling II predator–prey impulsive semidynamic model with complex Poincaré map, Nonlinear Dynam., 81 (2015), 1575–1596.
46. D. R. J. Chillingworth, An Introduction to Chaotic Dynamical Systems by Robert L. Devaney, 1986.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)