-
Mathematical Biosciences and Engineering, 2019, 16(6): 7589-7615. doi: 10.3934/mbe.2019381.
Research article Special Issues
-
Export file:
Format
- RIS(for EndNote,Reference Manager,ProCite)
- BibTex
- Text
Content
- Citation Only
- Citation and Abstract
Parameter regions that give rise to 2[n/2] +1 positive steady states in the n-site phosphorylation system
1 Dto. de Matemática, FCEN, Universidad de Buenos Aires, and IMAS (UBA-CONICET), Ciudad Universitaria, Pab. I, C1428EGA Buenos Aires, Argentina
2 Instituto de Matemática e Computação, IMC, Universidade Federal de Itajubá (UNIFEI), Av. BPS 1303, Bairro Pinheirinho, 37500-903, Itajubá, Minas Gerais, Brazil
† The authors contributed equally to this work.
Received: , Accepted: , Published:
Special Issues: Mathematical analysis of reaction networks: theoretical advances and applications
Keywords: multistationarity; distributive sequential n-site phosphorylation/dephosphorylation system; steady states; regions of multistationarity; intermediate species
Citation: Magalí Giaroli, Rick Rischter, Mercedes P. Millán, Alicia Dickenstein. Parameter regions that give rise to 2[n/2] +1 positive steady states in the n-site phosphorylation system. Mathematical Biosciences and Engineering, 2019, 16(6): 7589-7615. doi: 10.3934/mbe.2019381
References:
- 1. W. Lim, B. Meyer and T. Pawson, Cellular signaling: principles and mechanisms, Garland Science, 2014.
- 2. A. Dickenstein, Biochemical reaction networks: an invitation for algebraic geometers, MCA 2013, Contemp. Math., 656 (2016), 65–83.
- 3. N. I. Markevich, J. B. Hoek and B. N. Kholodenko, Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades, J. Cell Biol., 164 (2004), 353–359.
- 4. L. Wang and E. Sontag, On the number of steady states in a multiple futile cycle, J. Math. Biol., 57 (2008), 29–52.
- 5. J. Hell and A. D. Rendall, A proof of bistability for the dual futile cycle, Nonlinear Anal-Real., 24 (2015), 175–189.
- 6. C. Conradi, E. Feliu, M. Mincheva, et al., Identifying parameter regions for multistationarity, PLOS Computat. Biol., 13 (2017), e1005751.
- 7. C. Conradi and M. Mincheva, Catalytic constants enable the emergence of bistability in dual phosphorylation, J. R. Soc. Interface, 11 (2014), 20140158.
- 8. D. Flockerzi, K. Holstein and C. Conradi, N-site phosphorylation systems with 2N-1 steady states, Bull. Math. Biol., 76 (2014), 1892–1916.
- 9. K. Holstein, D. Flockerzi and C. Conradi, Multistationarity in Sequential Distributed Multisite Phosphorylation Networks, Bull. Math. Biol., 75 (2013), 2028–2058.
- 10. C. Conradi, A. Iosif and T. Kahle, Multistationarity in the space of total concentrations for systems that admit a monomial parametrization, T. Bull. Math. Biol., 2019, 1–36.
- 11. M. Thomson and J. Gunawardena, Unlimited multistability in multisite phosphorylation systems, Nature, 460 (2009), 274.
- 12. E. Feliu, A. D. Rendall and C. Wiuf, A proof of unlimited multistability for phosphorylation cycles, preprint, arXiv:1904.02983.
- 13. F. Bihan, A. Dickenstein and M. Giaroli, Lower bounds for positive roots and regions of multistationarity in chemical reaction networks, J. Algebra, (2019), to appear.
- 14. E. Feliu and C. Wiuf, Simplifying biochemical models with intermediate species, J. R. Soc. Interface, 10 (2013), 20130484.
- 15. E. Feliu and A. Sadeghimanesh, The multistationarity structure of networks with intermediates and a binomial core network, B. Math. Biol., 81 (2019), 2428–2462.
- 16. M. P. Millán and A. Dickenstein, The structure of MESSI biochemical networks, SIAM J. Appl. Dyn. Syst., 17 (2018), 1650–1682.
- 17. A. G. Kušnirenko, Newton polyhedra and Bezout's theorem, Funkcional. Anal. i Priložen, 10 (1976), 82–83. English translation: Funct. Anal. Appl., 10 (1977), 233–235.
- 18. A. Dickenstein, M. Giaroli, M. P. Millán, et al., Detecting the multistationarity structure in enzymatic networks, work in progress.
- 19. F. Bihan, F. Santos and P-J. Spaenlehauer, A polyhedral method for sparse systems with many positive solutions, SIAM J. Appl. Algebra Geom., 2 (2018), 620–645.
- 20. M. Giaroli, F. Bihan and A. Dickenstein, Regions of multistationarity in cascades of Goldbeter-Koshland loops, J. Math. Biol., 78 (2019), 1115–1145.
- 21. J. De Loera, J. Rambau and F. Santos, Triangulations: Structures for Algorithms and Applications, 2010, Series Algorithms and Computation in Mathematics, Springer, Berlin.
- 22. W.A. Stein, et al., Sage Mathematics Software (Version 8.4), The Sage Development Team, 2018. Available from: http://www.sagemath.org.
- 23. Maple 18 (2014) Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario.
- 24. E. Feliu, On the reaction rate constants that enable multistationarity in the two-site phosphorylation cycle, preprint, arXiv:1809.07275.
- 25. A. Cornish-Bowden, Fundamentals of Enzyme Kinetics, 4th Ed., Wiley-Blackwell, 2012.
This article has been cited by:
- 1. Frédéric Bihan, Alicia Dickenstein, Magalí Giaroli, Lower bounds for positive roots and regions of multistationarity in chemical reaction networks, Journal of Algebra, 2019, 10.1016/j.jalgebra.2019.10.002
Reader Comments
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *