
Mathematical Biosciences and Engineering, 2019, 16(6): 75627588. doi: 10.3934/mbe.2019380.
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Spreading speeds of epidemic models with nonlocal delays
1 School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China
2 School of Science, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
3 Department of Mathematics, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
Received: , Accepted: , Published:
Special Issues: Spatial dynamics for epidemic models with dispersal of organisms and heterogenity of environment
Keywords: auxiliary equation; nonmonotone system; asymptotic spreading
Citation: Guo Lin, Shuxia Pan, XiangPing Yan. Spreading speeds of epidemic models with nonlocal delays. Mathematical Biosciences and Engineering, 2019, 16(6): 75627588. doi: 10.3934/mbe.2019380
References:
 1. W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. A, 115 (1927), 700–721.
 2. A. Korobeinikov and P. K. Maini, Nonlinear incidence and stability of infectious disease models, Math. Med. Biol., 22 (2005), 113–128.
 3. G. Huang, Y. Takeuchi, W. Ma, et al., Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72 (2010), 1192–1207.
 4. M. Adimy, F. Crauste and S. Ruan, A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia, SIAM J. Appl. Math., 65 (2005), 1328–1352.
 5. L. Rass, M. A. Lifshits and J. Radcliffe, Spatial deterministic epidemics, American Mathematical Soc., RI, 2003.
 6. C. Atkinson and G. E. H. Reuter, Deterministic epidemic waves, Math. Proc. Cambridge Philos. Soc., 80 (1976), 315–330.
 7. O. Diekmann, Thresholds and travelling waves for the geographical spread of infection, J. Math. Biol., 69 (1978), 109–130.
 8. O. Diekmann, Run for your life. A note on the asymptotic speed of propagation of an epidemic, J. Differ. Equations, 33 (1979), 58–73.
 9. J. D. Murray, Mathematical Biology, II. Spatial Models and Biomedical Applications, Third edition. Interdisciplinary Applied Mathematics, 18, SpringerVerlag, New York, 2003.
 10. X. Liang and X. Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1–40.
 11. A. Ducrot, Convergence to generalized transition waves for some HollingTanner preypredator reactiondiffusion system, J. Math. Pures Appl., 100 (2013), 1–15.
 12. A. Ducrot, Spatial propagation for a two component reactiondiffusion system arising in population dynamics, J. Differ. Equations, 260 (2016), 8316–8357.
 13. N. F. Britton, Aggregation and the competitive exclusion principle, J. Theor. Biol., 136 (1989), 57–66.
 14. N. F. Britton, Spatial structures and periodic traveling waves in an integrodifferential reactiondiffusion population model, SIAM J. Appl. Math., 50 (1990), 1663–1688.
 15. S. A. Gourley and J. Wu, Delayed nonlocal diffusive systems in biological invasion and disease spread, in "Nonlinear dynamics and evolution equations" (eds. H. Brunner, X.Q. Zhao and X. Zou), Fields Inst. Commun., 48, AMS, Providence, RI, (2006), 137–200.
 16. S. Ruan, SpatialTemporal Dynamics in Nonlocal Epidemiological Models, in Mathematics for Life Science and Medicine, Springer, Berlin, Heidelberg, 2007, 97–122.
 17. P. De Mottoni, E. Orlandi and A. Tesei, Asymptotic behavior for a system describing epidemics with migration and spatial spread of infection, Nonlinear Anal.: TMA, 3 (1979), 663–675.
 18. Y. Li, W. T. Li and G. Lin, Traveling waves of a delayed diffusive SIR epidemic model, Comm. Pure Appl. Anal., 14 (2015), 1001–1022.
 19. Y. Enatsu, Y. Nakata and Y. Muroya, Global stability of SIRS epidemic models with a class of nonlinear incidence rates and distributed delays, Acta Math. Sci. Ser. B, 32 (2012), 851–865.
 20. S. C. Fu, Traveling waves for a diffusive SIR model with delay, J. Math. Anal. Appl., 435 (2016), 20–37.
 21. J. Yang, S. Y. Liang and Y. Zhang, Travelling waves of a delayed SIR epidemic model with nonlinear incidence rate and spatial diffusion, PLoS One, 6 (2011), e21128.
 22. W. F. Fagan and J. G. Bishop, Trophic interactions during primary succession: Herbivores slow a plant reinvasion at Mount St. Helens, Amer. Nat., 155 (2000), 238–251.
 23. J. D. Murray, Mathematical Biology, I. An introduction, Third edition. Interdisciplinary Applied Mathematics, 17, SpringerVerlag, New York, 2002.
 24. M. R. Owen and M. A. Lewis, How predation can slow, stop or reverse a prey invasion, Bull. Math. Biol., 63 (2001), 655–684.
 25. D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, In Partial Differential Equations and Related Topics. Springer, Berlin, Heidelberg, 1975, 5–49.
 26. J. Fang, X. Yu and X. Q. Zhao, Traveling waves and spreading speeds for timespace periodic monotone systems, J. Funct. Anal., 272 (2017), 4222–4262.
 27. R. Lui, Biological growth and spread modeled by systems of recursions. I. Mathematical theory, Math. Biosci., 93 (1989), 269–295.
 28. H. F. Weinberger, Longtime behavior of a class of biological model, SIAM J. Math. Anal., 13 (1982), 353–396.
 29. H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models, J. Math. Biol., 45 (2002), 183–218.
 30. S. B. Hsu and X. Q. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations, SIAM J. Math. Anal., 40 (2008), 776–789.
 31. G. Lin, Spreading speed of the delayed Fisher equation without quasimonotonicity, Nonlinear Anal. Real World Appl., 12 (2011), 3713–3718.
 32. X. L. Liu and S. Pan, Spreading speed in a nonmonotone equation with dispersal and delay, Mathematics, 7 (2019), 291.
 33. G. Lin and W. T. Li, Asymptotic spreading of competition diffusion systems: the role of interspecific competitions, European J. Appl. Math., 23 (2012), 669–689.
 34. G. Lin, W. T. Li and S. Ruan, Spreading speeds and traveling waves of a competitive recursion, J. Math. Biol., 62 (2011), 165–201.
 35. G. Lin and R. Wang, Spatial invasion dynamics for a time period predatorprey system, Math. Methods Appl. Sci., 41 (2018), 7612–7623.
 36. S. Pan, Invasion speed of a predatorprey system, Appl. Math. Lett., 74 (2017), 46–51.
 37. J. Wu, Theory and Applications of Partial Functional Differential Equations, SpringerVerlag, New York, 1996.
 38. W. M. Liu, S. A. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 23 (1986), 187–204.
 39. D. Xiao and S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci., 208 (2007), 419–429.
 40. W. T. Li, S. Ruan and Z. C. Wang, On the diffusive Nicholson's blowflies equation with nonlocal delay, J. Nonlinear Sci., 17 (2007), 505–525.
 41. X. Li and S. Pan, Traveling wave solutions of a delayed cooperative system, Mathematics, 7 (2019), ID: 269.
 42. X. Zou, Delay induced traveling wave fronts in reaction diffusion equations of KPPFisher type, J. Comput. Appl. Math., 146 (2002), 309–321.
 43. S. Ruan and J. Wu, Reactiondiffusion systems with infinite delay, Canad. Appl. Math. Quart., 2 (1994), 485–550.
 44. H. L. Smith and X. Zhao, Global asymptotic stability of traveling waves in delayed reaction diffusion equations, SIAM J. Math. Anal., 31 (2000), 514–534.
 45. Z. C. Wang, W. T. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay, J. Differ. Equations, 238 (2007), 153–200.
 46. Z. C. Wang, W. T. Li and S. Ruan, Entire solutions in bistable reactiondiffusion equations with nonlocal delayed nonlinearity, Trans. Amer. Math. Soc., 361 (2009), 2047–2084.
 47. R. H. Martin and H. L. Smith, Abstract functional differential equations and reactiondiffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1–44.
 48. T. Yi, Y. Chen and J. Wu, Unimodal dynamical systems: comparison principles, spreading speeds and travelling waves, J. Differ. Equations, 254 (2013), 3538–3572.
 49. W. J. Bo, G. Lin and S. Ruan, Traveling wave solutions for time periodic reactiondiffusion systems, Discrete Contin. Dyn. Syst., 38 (2018), 4329–4351.
 50. H. Malchow, S. V. Petrovskii and E. Venturino, Spatiaotemporal Patterns in Ecology and Epidemiology: Theory, Models and Simulation, Chapman & Hall/CRC, Boca Raton, 2008.
 51. M. Mei, C. Ou and X. Q. Zhao, Global stability of monostable traveling waves for nonlocal timedelayed reactiondiffusion equations, SIAM J. Math. Anal., 42 (2010), 2762–2790.
 52. D. H. Sattinger, On the stability of waves of nonlinear parabolic systems, Adv. Math., 22 (1976), 312–355.
This article has been cited by:
 1. Fuzhen Wu, Dongfeng Li, Minimal wave speed of a diffusive SIR epidemic model with nonlocal delay, International Journal of Biomathematics, 2019, 1950081, 10.1142/S1793524519500815
 2. Guo Lin, Yibin Niu, Shuxia Pan, Shigui Ruan, Spreading Speed in an Integrodifference Predator–Prey System without Comparison Principle, Bulletin of Mathematical Biology, 2020, 82, 5, 10.1007/s1153802000725y
 3. Piotr Skórka, Beata Grzywacz, Dawid Moroń, Magdalena Lenda, Abdallah M. Samy, The macroecology of the COVID19 pandemic in the Anthropocene, PLOS ONE, 2020, 15, 7, e0236856, 10.1371/journal.pone.0236856
Reader Comments
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *