
Mathematical Biosciences and Engineering, 2019, 16(6): 73277361. doi: 10.3934/mbe.2019366
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Global dynamics of nonsmooth Filippov pestnatural enemy system with constant releasing rate
School of Mathematics and Information Science, Shaanxi Normal University, Xi’an, P.R. China
Received: , Accepted: , Published:
Special Issues: Nonsmooth biological dynamical systems and applications
References
1. M. E. M. Meza, A. Bhaya and E. Kaszkurewicz, Threshold policies control for predatorprey systems using a control Liapunov function approach, Theor. Popul. Biol., 67 (2005), 273–284.
2. M. I. D. S. Costa and M. E. M. Meza, Application of a threshold policy in the management of multispecies fisheries and predator culling, Math. Med. Biol., 23 (2006), 63–75.
3. S. C. M. Da, Harvesting induced fluctuations: insights from a threshold management policy, Math. Biosci., 205 (2007), 77–82.
4. S. Y. Tang and R. A. Cheke, Models for integrated pest control and their biological implications, Math. Biosci., 215 (2008), 115–125.
5. S. Y. Tang and L. S. Chen, Modelling and analysis of integrated pest management strategy, Discrete Contin. DynB, 4 (2012), 759–768.
6. S. Y. Tang and R. A. Cheke, Statedependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences, J. Math. Biol., 50 (2005), 257–292.
7. G. Y. Tang, W. J. Qin and S. Y. Tang, Complex dynamics and switching transients in periodically forced Filippov preypredator system, Chaos, Solitons & Fractals, 61 (2014), 13–23.
8. A. L. Wang, Y. N. Xiao and R. Smith, Using nonsmooth models to determine thresholds for microbial pest management, J. Math. Biol., 78 (2019), 1389–1424.
9. M. I. D. S. Costa and L. D. B. Faria, Integrated pest management: theoretical insights from a threshold policy, Neotrop. Entomol., 39 (2010), 1–4.
10. L. M. Wang, L. S. Chen and J. J. Nieto, The dynamics of an epidemic model for pest control with impulsive effect, Nonlinear AnalReal, 3 (2010), 1374–1386.
11. R. Mu, A. R. Wei and Y. P. Yang, Global dynamics and sliding motion in A(H7N9) epidemic models with limited resources and Filippov control, J. Math. Anal. Appl., 477 (2019), 1296–1317.
12. M. Biák, T. Hanus and D. Janovská, Some applications of Filippov's dynamical systems, J. Comput. Appl. Math., (2013), 132–143.
13. F. Dercole, A. Gragnani, Y. A. Kuznetsov, et al., Numerical sliding bifurcation analysis: an application to a relay control system, IEEE T. CircuitsI, 50 (2003), 1058–1063.
14. F. Dercole and Y. A. Kuznetsov, SlideCont: An auto97 driver for bifurcation analysis of Filippov systems, Acm T. Math. Software, 31 (2005), 95–119.
15. Y. X. Chen and L. H. Huang, A Filippov system describing the effect of prey refuge use on a ratiodependent predatorprey model, J. Math. Anal. Appl., 2 (2015), 817–837.
16. J. W. Qin, X. W. Tan, X. T. Shi, et al., Dynamics and bifurcation analysis of a Filippov predatorprey ecosystem in a seasonally fluctuating environment, Int. J. Bifurcat. Chaos, 29 (2019).
17. S. Y. Tang, G. Y. Tang and W. J. Qin, Codimension1 sliding bifurcations of a Filippov pest growth model with threshold policy, Int. J. Bifurcat. Chaos, 24 (2014), 1450122.
18. S. Y. Tang, J. H. Liang, Y. N. Xiao, et al., Sliding bifurcations of Filippov two stage pest control models with economic thresholds, SIAM J. Appl. Math., 72 (2012), 1061–1080.
19. J. H. Frank, M. P. Hoffman and A. C. Frodsham, Natural enemies of vegetable insect pests, Fla. Entomol., 76 (1993), 531.
20. D. J. Greathead, Natural enemies of tropical locusts and grasshoppers: their impact and potential as biological control agents, Biological Control of Locusts & Grasshoppers, (1992), 105–121.
21. J. C. Van Lenteren and J. Woets, Biological and integrated pest control in greenhouses, Ann. Rev. Entomol., 33 (1988), 239–269.
22. J. C. Van Lenteren, Measures of success in biological control of arthropods by augmentation of natural enemies, Measures of Success in Biological Control, 3 (2000), 77–89.
23. Y. A. Kuznetsov, S. Rinalai and A. Gragnani, Oneparameter bifurcations in planar Filippov systems, Int. J. Bifurcat. Chaos, 13 (2003), 2157–2188.
24. F. Dercole, A. Gragnani and S. Rinaldi, Bifurcation analysis of piecewise smooth ecological models, Theor. Popul. Biol., 72 (2007), 197–213.
25. K. Gupta and S. Gakkhar, The Filippov approach for predatorprey system involving mixed type of functional responses, Differ. Eq. Dyn. Syst., (2016), 1–21.
26. M. Antali and G. Stepan, Sliding and crossing dynamics in extended Filippov systems, SIAM J. Appl. Dyn. Syst., 17 (2018), 823–858.
27. R. Cristiano, T. Carvalho, D. J. Tonon, et al., Hopf and homoclinic bifurcations on the sliding vector field of switching systems in R 3 : A case study in power electronics, Physica D, 347 (2017), 12–20.
28. L. S. Chen and Z. J. Jing, The existence and uniqueness of the limit cycle of the differential equations in the predatorprey system, Chinese Sci. Bull., 7 (1986), 73–80.
29. M. A. AzizAlaoui and M. D. Okiye, Boundedness and global stability for a predatorprey model with modified LeslieGower and Hollingtype II schemes, Appl. Math. Lett., 16 (2003), 1069–1075.
30. Z. F. Zhang, T. R. Ding, W. Z. Huang, et al., Qualitative Theory of Differential Equations, Science Press, Beijing, 1985.
31. D. M. Xiao and S. G. Ruan, BogdanovTakens bifurcations in predatorprey systems with constant rate harvesting, Fields Institute Communications, 21 (1999), 493–506.
32. A. F. Filippov, Differential equations with discontinuous righthand sides, Kulwer Academic Publishers, Dordrecht, The Netherlands, 1988.
33. S. Y. Tang and Y. N. Xiao, Biological Dynamics of Single Species, Science Press, Beijing, 2008.
34. Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 2^{nd} edition, Springer, New York, 1998.
35. L. Perko, Differential Equations and Dynamical Systems 3^{rd} edition, Springer, New York, 1996.
36. H. J. Cai, Y. J. Gong and S. G. Ruan, Bifurcation analysis in a predatorprey model with constant yield predator harvesting, Discrete Conti. Dyn (DCDSB), 18 (2014), 2101–2121.
37. S. R. Lubkin, Simulating, analyzing, and animating dynamical systems: A guide to XPPAUT for researchers and students by Bard Ermentrout, SIAM Rev., 45 (2003), 150–152.
38. J. H. Liang, S. Y. Tang, J. J. Nieto, et al., Analytical methods for detecting pesticide switches with evolution of pesticide resistance, Math. Biosci., 245 (2013), 249–257.
39. J. H. Liang, S. Y. Tang, R. A. Cheke, et al., Adaptive Release of Natural Enemies in a PestNatural Enemy System with Pesticide Resistance, B. Math. Biol., 75 (2013), 2167–2195.
40. S. S. Ge, C. Wang and T. H. Lee, Adaptive backstepping control of a class of chaotic systems, Int. J. Bifurcat. Chaos, 10 (2000), 1149–1156.
41. C. Y. Gong, Y. M. Li and X. H. Sun, Adaptive backstepping control of the biomathematical model of muscular blood vessel, J. Biomath., 22 (2007), 503–508.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)