Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Rapidly forming, slowly evolving, spatial patterns from quasi-cycle Mexican Hat coupling

1 Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
2 Department of Psychology and Brain Research Centre, 2136 West Mall, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada

Special Issues: Neural Coding 2018

Alattice-indexed familyof stochasticprocesses hasquasi-cycle oscillationsif itsotherwise-damped oscillations are sustained by noise. Such a family performs the reaction part of a discrete stochastic reaction-diffusion system when we insert a local Mexican Hat-type, difference of Gaussians, coupling on a one-dimensional and on a two-dimensional lattice. Quasi-cycles are a proposed mech-anism for the production of neural oscillations, and Mexican Hat coupling is ubiquitous in the brain. Thus this combination might provide insight into the function of neural oscillations in the brain. Im-portantly, we study this system only in the transient case, on time intervals before saturation occurs. In one dimension, for weak coupling, we find that the phases of the coupled quasi-cycles synchronize (es-tablish a relatively constant relationship, or phase lock) rapidly at coupling strengths lower than those required to produce spatial patterns of their amplitudes. In two dimensions the amplitude patterns form more quickly, but there remain parameter regimes in which phase synchronization patterns form with-out being accompanied by clear amplitude patterns. At higher coupling strengths we find patterns both of phase synchronization and of amplitude (resembling Turing patterns) corresponding to the patterns of phase synchronization. Specific properties of these patterns are controlled by the parameters of the reaction and of the Mexican Hat coupling.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Kuramoto model; Mexican Hat; quasi-cycles; quasi-patterns; neural oscillators; stochastic neural field; excitation-inhibition interaction

Citation: P. E. Greenwood, L. M. Ward. Rapidly forming, slowly evolving, spatial patterns from quasi-cycle Mexican Hat coupling. Mathematical Biosciences and Engineering, 2019, 16(6): 6769-6793. doi: 10.3934/mbe.2019338

References

  • 1. Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer, New York, 1984.
  • 2. P. E. Greenwood, M. D. McDonnell and L. M. Ward, A Kuramoto coupling of quasi-cycle oscillators with application to neural networks, J. Coupl. Syst. Multiscale Dynam., 4, (2016), 1–12.
  • 3. S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in popula-tions of coupled oscillators, Physica D, 143, (2000), 1–20.
  • 4. M. Breakspear, S. Heitmann and A. Daffertshofer, Generative models of cortical oscillations: neurobiological implications of the Kuramoto model, Front. Hum. Neurosci., 4, (2010), 190.
  • 5. G. Deco and M. L. Kringelbach, Metastability and coherence: Extending the communication through coherence hypothesis using a whole-brain computational perspective, Trends Neurosci., 39, (2016), 125–135.
  • 6. S. Chandra and M. Girvan and E. Ott, Complexity reduction for systems of interacting orientable agents: beyond the Kuramoto model, arXiv,1809.00783v1, (2018).
  • 7. S. Heitman and G. B. Ermentrout, Synchrony, waves and ripple in spatially coupled Kuramoto oscillators with Mexican hat connectivity, Biol. Cybernet., 109, (2015), 333–347.
  • 8. Y. Park, S. Heitman and G.B. Ermentrout, The utility of phase models in studying neural synchro-nization, arXiv, 1707.05713, (2017).
  • 9. T. Uezu, T. Kimoto and M. Okada, Solvable model of a phase oscillator Network on a circle with infinite-range Mexican-Hat-type Interaction, J. Phys. Soc. Jap., 81, (2012), 07301.
  • 10. T. Uezu, T. Kimoto and M. Okada, Analysis of a solvable model of a phase oscillator network on a circle with infinite-range Mexican-hat-type interaction, Phys. Rev. E, 88, (2013), 032918.
  • 11. P. C. Bressloff, Metastable states and quasicycles in a stochastic Wilson-Cowan model of neuronal population dynamics, Phys. Rev. E, 82, (2010), 051903.
  • 12. P. E. Greenwood, M. D. McDonnell and L. M. Ward, Dynamics of gamma bursts in local field potentials, Neural Comput., 27, (2015), 74–103.
  • 13. L. M. Ward and P. E. Greenwood, Stochastic facilitation in the brain? J. Stat. Mech. Theory Exper., 5, (2016), 054033.
  • 14. G. von Bekesy, Mach band type lateral inhibition in different sense organs, J. Gen. Physiol., 50, (1967), 519–532.
  • 15. D. Marr, Vision, Academic Press, New York, 1980.
  • 16. K. Hamaguchi and K. Aihara, Quantitative information transfer through layers of spiking neurons connected by Mexican-Hat-type connectivity, Neurocomputing., 58–60, (2004), 85–90.
  • 17. S. P. Burns, D. Xing and R. M. Shapley, Is gamma-band activity in the local field potential of V1 cortex a "clock" or filtered noise? J. Neurosci., 31, (2011), 9658–9664.
  • 18. T. C. Butler and N. Goldenfeld, Fluctuation-driven Turing patterns, Phys. Rev. E, 84, (2011), 011112.
  • 19. T. C. Butler, M. Benayoun, E. Wallace, et al., Evolutionary constraints on visual cortex architecture from the dynamics of hallucinations, Proc. Nat. Acad. Sci. USA, 109, (2012), 606–609.
  • 20. A. J. McKane, T. Biancalani and T. Rogers, Stochastic pattern formation and spontaneous polari-sation: The linear noise approximation and beyond, Bull. Math. Biol., 76, (2014), 895–921.
  • 21. P. H. Baxendale, P. E. Greenwood and L. M. Ward, Noise sharing and Mexican Hat coupling in a stochastic neural field, Phys. Rev. E, (2019).
  • 22. P. H. Baxendale and P. E. Greenwood, Sustained oscillations for density dependent Markov processes, J. Math. Biol., 63, (2011), 433–457.
  • 23. K. Kang, M. Shelley, J. A. Henrie, et al., LFP spectral peaks in V1 cortex: Network resonance and cortico-cortical feedback, J. Computat. Neurosci., 29, (2010), 495–507.
  • 24. S. L. Brincat and C. E. Connor, Dynamic shape synthesis in posterior inferotemporal cortex, Neuron, 49, (2006), 17–24.
  • 25. E. Salinas and L. F. Abbott, A model of multiplicative neural responses in parietal cortex, Proc. Nat. Acad. Sci. USA, 93, (1996), 11956–11961.
  • 26. R. E. Walley and T. D. Weiden, Lateral inhibition and cognitive masking: A neuropsychological theory of attention, Psych. Rev., 80, (1973), 284–302.
  • 27. K. Kang, M. Shelley and H. Sompolinsky, Mexican hats and pinwheels in visual cortex, Proc. Nat. Acad. Sci. USA, 100, (2003), 2848–2853.
  • 28. P. Buzás, U. T. Eysel, P. Adjorán, et al., Axonal topography of cortical basket cells in relation to orientation, direction, and ocular dominance maps, J. Comp. Neurol., 437, (2001), 259–285.
  • 29. J. P. Lachaux, E. Rodriguez, J. Martinerie, et al., Measuring phase synchrony in brain signals, Hum. Brain Map., 8, (1999), 194–208.
  • 30. P. Fries, A mechanism for cognitive dynamics: Neuronal communication through neuronal coher- ence, Trends Cog. Sci., 9, (2005), 474–480.
  • 31. H. P. Wang, D. Spencer, J. M. Fellous, et al., Synchrony of thalamocortical inputs maximizes cortical reliability, Science, 328, (2010), 106–109.
  • 32. P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer-Verlag, New York, 1992.
  • 33. J. D. Murray, Mathematical Biology, Springer, Berlin, 1989.
  • 34. B. van der Pol, On "relaxation-oscillations", Phil. Mag. J. Sci., 2, (1926), 978–992.
  • 35. D. Somers and N. Kopell, Rapid synchrony through fast threshold modulation, Biol. Cyber., 68, (1993), 393–407.
  • 36. A. Daffertshofer and B. C. M.van Wijk, On the influence of amplitude on the connectivity between phases, Frontiers Neuroinform., 5, (2011), 1–12.
  • 37. T. Akam and D. M. Kullmann, Oscillatory multiplexing of population codes for selective com-munication in the mammalian brain, Nat. Rev. Neurosci., 15, (2014), 111–122.
  • 38. A. L. Barth and J. F. A. Poulet, Experimental evidence for sparse firing in the neocortex, Trends Neurosci., 35, (2012), 345–355.
  • 39. E. Wallace, M. Benayoun, W. van Dronglen, et al., Emergent oscillations in networks of stochastic spiking neurons, PLoS One, 6, (2011), e14804.
  • 40. D. Terman and D Wang, Global competition and local cooperation in a network of neural oscilla-tors, Physica D, 81, (1995), 148–176.
  • 41. O. Faugeras and J. Inglis, Stochastic neural field equations: a rigorous footing, J. Math. Biol., 71, (2015), 259–300.
  • 42. A. Hutt, A. Longtin and L. Schimansky-Geier, Additive noise-induced Turing transitions in spatial systems with application to neural fields and the Swift-Hohenberg equation, Physica D, 237, (2008), 755–773.
  • 43. P. Jung and G. Mayer-Kress Spatiotemporal stochastic resonance in excitable media Phys. Rev. Lett., 74 ,(1995), 2130–2133.

 

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved