Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Modified dragonfly algorithm based multilevel thresholding method for color images segmentation

College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China

Special Issues: Bio-inspired algorithms and Bio-systems

Accurate image segmentation is the preprocessing step of image processing. Multi-level threshold segmentation has important research value in image segmentation, which can effectively solve the problem of region analysis of complex images, but the computational complexity increases accordingly. In order to overcome this problem, an modified Dragonfly algorithm (MDA) is proposed to determine the optimal combination of different levels of thresholds for color images. Chaotic mapping and elite opposition-based learning strategies (EOBL) are used to improve the randomness of the initial population. The hybrid algorithm of Dragonfly Algorithms (DA) and Differential Evolution (DE) is used to balance the two basic stages of optimization: exploration and development. Kapur entropy, minimum cross-entropy and Otsu method are used as fitness functions of image segmentation. The performance of 10 test color images is evaluated and compared with 9 different meta-heuristic algorithms. The results show that the color image segmentation method based on MDA is more effective and accurate than other competitors in average fitness value (AF), standard deviation (STD), peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) and feature similarity index (FSIM). Friedman test and Wilcoxon’s rank sum test are also performed to assess the significant difference between the algorithms.
  Article Metrics

Keywords Dragonfly algorithm; multilevel thresholding; Kapur's entropy; minimum cross entropy; Otsu method; elite opposition-based learning; differential evolution

Citation: Xiaoxu Peng, Heming Jia, Chunbo Lang. Modified dragonfly algorithm based multilevel thresholding method for color images segmentation. Mathematical Biosciences and Engineering, 2019, 16(6): 6467-6511. doi: 10.3934/mbe.2019324


  • 1. C. Jung, M. Jian, J. Liu, et al., Interactive image segmentation via kernel propagation, Pattern Recognit., 47 (2014), 2745–2755.
  • 2. S. H. Lee, H. I. Koo and N. I. Cho, Image segmentation algorithms based on the machine learning of features, Pattern Recognit. Lett., 31 (2010), 2325–2336.
  • 3. W. Chen, H. Yue, J. Wang, et al., An improved edge detection algorithm for depth map inpainting, Opt. Lasers Eng., 55 (2014), 69–77.
  • 4. J. Ye, G. Fu and U. P. Poudel, High-accuracy edge detection with Blurred Edge Model, Image Vision Comput., 23 (2005), 453–467.
  • 5. G. Zhang, H. Zhu and N. Xu, Flotation bubble image segmentation based on seed region boundary growing, Min. Sci. Technol., 21 (2011), 239–242.
  • 6. K. Liu, L. Guo, H. Li, et al., Fusion of Infrared and Visible Light Images Based on Region Segmentation, Chin. J. Aeronaut., 22 (2009), 75–80.
  • 7. N. Otsu, A threshold selection method from gray-level histograms, IEEE Trans. Syst. Man Cybern., 9 (1979), 62–66.
  • 8. J. N. Kapur, P. K. Sahoo and A. K. C. Wong, A new method for gray-level picture thresholding using the entropy of the histogram, Comput. Vision Graphics Image Process., 29 (1985), 273–285.
  • 9. C. H. Li and C. K. Lee, Minimum cross entropy thresholding, Pattern Recognit., 26 (1993), 617–625.
  • 10. M. A. E. Aziz, A. A. Ewees and A. E. Hassanien, Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation, Expert Syst. Appl., 83 (2017), 242–256.
  • 11. G. Sun, A. Zhang, Y. Yao, et al., Multilevel thresholding using grey wolf optimizer for image segmentation, Expert Syst. Appl., 86 (2017), 64–76.
  • 12. E. Cuevas, D. Zaldivar and M. Pérez-cisneros, A novel multi-threshold segmentation approach based on differential evolution optimization, Expert Syst. Appl., 37 (2010), 5265–5271.
  • 13. G. Sun, A. Zhang, Y. Yao, et al., A novel hybrid algorithm of gravitational search algorithm with genetic algorithm for multi-level thresholding, Appl. Soft Comput., 46 (2016), 703–730.
  • 14. A. K. Bhandari, V. K. Singh, A. Kumar, et al., Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur's entropy, Expert Syst. Appl., 41 (2014), 3538–3560.
  • 15. A. K. Bhandari, V. K. Singh, A. Kumar, et al., A novel technique for multilevel optimal magnetic resonance brain image thresholding using bacterial foraging, Meas., 41 (2008), 1124–1134.
  • 16. S. Ouadfel and A. Taleb-Ahmed, Social spiders optimization and flower pollination algorithm for multilevel image thresholding: A performance study, Expert Syst. Appl., 55 (2016), 566–584.
  • 17. U. Mlakar, B. Potočnik and J. Brest, A hybrid differential evolution for optimal multilevel image thresholding, Expert Syst. Appl., 65(2016), 221–232.
  • 18. P. D. Sathya and R. Kayalvizhi, Modified bacterial foraging algorithm based multilevel thresholding for image segmentation, Eng. Appl. Artif. Intell., 24 (2011), 595–615.
  • 19. W. A. Hussein, S. Sahran and S. N. H. S. Abdullah, A fast scheme for multilevel thresholding based on a modified bees algorithm, Knowled. Based Syst., 101 (2016), 114–134.
  • 20. H. S. Gill, B. S. Khehra, A. Singh, et al., Teaching-learning-based optimization algorithm to minimize cross entropy for Selecting multilevel threshold values, Egypt. Inform. J., (2018).
  • 21. K. P. B. Resma and S. N. Madhu, Multilevel thresholding for image segmentation using Krill Herd Optimization algorithm, J. King Saud Univ. Comput. Inf. Sci., (2018).
  • 22. S. Pare, A. K. Bhandari, A. Kumar, et al., A new technique for multilevel color image thresholding based on modified fuzzy entropy and Lévy flight firefly algorithm, Comput. Electr. Eng., 70 (2018), 476–495.
  • 23. R. A. Ibrahim, M. A. Elaziz and S. Lu, Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization, Expert Syst. Appl., 108 (2018), 1–27.
  • 24. S. Mirjalili, Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems, Neural Comput. Appl., 27 (2016), 1053–1073.
  • 25. F. Wilcoxon, Individual comparison by ranking methods, Biom. Bull., 1 (1945), 80–83.
  • 26. C. Fan, H. Ouyang, Y. Zhang, et al., Optimal multilevel thresholding using molecular kinetic theory optimization algorithm, Appl. Math. Comput., 239 (2014), 391–408.
  • 27. S. Manikandan, K. Ramar, M. W. Iruthayarajan, et al., Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm, Meas., 47 (2014), 558–568.
  • 28. M. Horng, A multilevel image thresholding using the honey bee mating optimization, Appl. Math. Comput., 215 (2010), 3302–3310.
  • 29. L. Cao, P. Bao and Z. Shi, The strongest schema learning GA and its application to multilevel thresholding, Image Vision Comput., 26 (2008), 716–724.
  • 30. A. Bouaziz, A. Draa and S. Chikhi, Artificial bees for multilevel thresholding of iris images, Swarm Evol. Comput., 21 (2015), 32–40.
  • 31. A. K. Bhandari, A. Kumar and G. K. Singh, Tsallis entropy based multilevel thresholding for colored satellite image segmentation using evolutionary algorithms, Expert Syst. Appl., 42 (2015), 8707–8730.
  • 32. S. Pare, A. Kumar, V. Bajaj, et al., An efficient method for multilevel color image thresholding using cuckoo search algorithm based on minimum cross entropy, Appl. Soft Comput., 61 (2017), 570–592.
  • 33. K. Price, Differential evolution: A fast and simple numerical optimizer, Fuzzy Inf. Process. Soc., (1996), 524–527.
  • 34. H. R. Tizhoosh, Opposition-based learning: A new scheme for machine intelligence, Int. Conf. Computat. Intell. Modell., 1 (2005), 695–701.
  • 35. T. Xiang, X. Liao and K. Wong, An improved particle swarm optimization algorithm combined with piecewise linear chaotic map, Appl. Math. Comput., 190 (2007), 1637–1645.
  • 36. G. Kaur and S. Arora, Chaotic whale optimization algorithm, J. Comput. Des. Eng., 5 (2018), 275–284.
  • 37. M. Kohli and S. Arora, Chaotic grey wolf optimization algorithm for constrained optimization problems, J. Comput. Des. Eng., 5 (2018), 458–472.
  • 38. H. Wang, Z. Wu, S. Rahnamayan, et al., Enhancing particle swarm optimization using generalized opposition-based learning, Inf. Sci., 181 (2011), 4699–4714.
  • 39. H. Wang, Z. Wu and S. Rahnamayan, Enhanced opposition-based differential evolution for high-dimensional optimization problems, Soft Comput., 15 (2011), 2127–2140.
  • 40. H. Wang, S. Rahnamayan, H. Sun, et al., Gaussian bare-bones differential evolution, IEEE Trans. Cybern., 43 (2013), 634–647.
  • 41. H. Zorlu, Optimization of weighted myriad filters with differential evolution algorithm, AEU Int. J. Electron. Commun., 77 (2017), 1–9.
  • 42. U. Yüzgeç and M. Eser, Chaotic based differential evolution algorithm for optimization of baker's yeast drying process, Egypt. Inf. J., 19 (2018), 151–163.
  • 43. R. P. Parouha and K. N. Das, Economic load dispatch using memory based differential evolution, Int. J. Bioinspired. Comput., 11 (2018), 159–170.
  • 44. H. Wang, Z. Wu and S. Rahnamayan, Differential evolution based on node strength, Int. J. Bioinspired. Comput., 11 (2018), 34–45.
  • 45. S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, et al., Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems, Adv. Eng. Software., 14 (2017), 163–191.
  • 46. S. Mirjalili, SCA: A Sine Cosine Algorithm for solving optimization problems, Knowled. Based Syst., 96 (2016), 120–133.
  • 47. N. Singh and S. B. Singh, A novel hybrid GWO-SCA approach for optimization problems, Eng. Sci. Technol. Int. J., 20 (2017), 1586–1601.
  • 48. S. Mirjalili, The Ant Lion Optimizer, Adv. Eng. Software., 83(2015), 80–98.
  • 49. E. Emary, H. M. Zawbaa and A. E. Hassanien, Binary ant lion approaches for feature selection, Neurocomput., 213 (2016), 54–65.
  • 50. D. Manjarres, I. Landa-Torres, S. Gil-Lopez et al., A survey on applications of the harmony search algorithm, Eng. Appl. Artif. Intell., 26 (2013), 1818–1831.
  • 51. A. H. Gandomi and X. Yang, Chaotic bat algorithm, Int. J. Comput. Sci. Eng. Int., 5 (2014), 224–232.
  • 52. Z. Ye, M. Wang, W. Liu, et al., Fuzzy entropy based optimal thresholding using bat algorithm, Appl. Soft Comput., 31 (2015), 381–395.
  • 53. N. S. M. Raja, S. A. Sukanya and Y. Nikita, Improved PSO based multi-level thresholding for cancer infected breast thermal images using otsu, Procedia Comput. Sci., 48 (2015), 524–529.
  • 54. A. Chander, A. Chatterjee and P. Siarry, A new social and momentum component adaptive PSO algorithm for image segmentation, Expert Sys. Appl., 38 (2011), 4998–5004.
  • 55. A. K. Bhandari, A novel beta differential evolution algorithm-based fast multilevel thresholding for color image segmentation, Neural Comput. Applic., (2018), 1–31. DOI:10.1007/s00521-018-3771-z.
  • 56. M. Abdel-Baset, H. Wu, Y. Zhou, et al., Elite opposition-flower pollination algorithm for quadratic assignment problem, J. Intell. Fuzzy Syst., 33 (2017), 901–911. DOI: 10.3233/jifs-162141.
  • 57. C. Li and A. C. Bovik, Content-partitioned structural similarity index for image quality assessment, Signal Process. Image Commun., 25 (2010), 517–526.
  • 58. J. John, M. S. Nair, P. R. A. Kumar, et al., A novel approach for detection and delineation of cell nuclei using feature similarity index measure, Biocybern. Biomed. Eng., 36 (2016), 76–88.
  • 59. S. Pare, A. K. Bhandari, A. Kumar, et al., An optimal color image multilevel thresholding technique using grey-level co-occurrence matrix, Expert Syst. Appl., 87 (2017), 335–362.
  • 60. D. H. Wolpert and W. G. Macready, No free lunch theorems for optimization, Evol. Comput. IEEE Trans., 1 (1997), 67–82.


This article has been cited by

  • 1. Yassine Meraihi, Amar Ramdane-Cherif, Dalila Acheli, Mohammed Mahseur, Dragonfly algorithm: a comprehensive review and applications, Neural Computing and Applications, 2020, 10.1007/s00521-020-04866-y

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved