
Mathematical Biosciences and Engineering, 2019, 16(5): 58365850. doi: 10.3934/mbe.2019291
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Asymptotic analysis of endemic equilibrium to a brucellosis model
1 School of Mathematics, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
2 Data Science And Technology, North University of China, Taiyuan, Shanxi 030051, P. R. China
3 Complex Systems Research Center, Shanxi University, Taiyuan 030006, Shanxi, China
4 School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
Received: , Accepted: , Published:
Special Issues: Transmission dynamics in infectious diseases
References
1. M. J. Corbel, Brucellosis: an overview, Emerg. Infect. Dis., 3(1997), 213–221.
2. G. Pappas, N. Akritidis, M. Bosilkovski, et al., Brucellosis, N. Engl. J. Med., 352(2005), 2325–2536.
3. M. T. Li, G. Q. Sun, J. Zhang, et al., Transmission dynamics and control for a Brucellosis Model in Hinggan League of Inner Mongolia, China, Math. Biosci. Eng., 11(2014), 1115–1137.
4. M. L. Boschiroli, V. Foulongne and D. O'Callaghan, Brucellosis: a worldwide zoonosis, Curr. Opin. Microbiol., 4(2001), 58–64.
5. G. Pappas, P. Papadimitriou, N. Akritidis, et al., The new global map of human brucellosis, Lancet Infect. Dis., 6(2006), 91–99.
6. M. P. Franco, M. Mulder, R. H. Gilman, et al., Human brucellosis, Lancet Infect. Dis., 7(2007), 775–786.
7. M. N. Seleem, S. M. Boyle and N. Sriranganathan, Brucellosis: A reemerging zoonosis, Vet. Microbiol., 140 (2010), 392–398.
8. H. Heesterbeek, R. M. Anderson, V. Andreasen, et al., Modeling infectious disease dynamics in the complex landscape of global health, Science, 6227 (2015), aaa4339.
9. M. T. Li, G. Q. Sun, J. Zhang, et al., Transmission dynamics of a multigroup brucellosis model with mixed cross infection in public farm, Appl. Math. Comput., 237(2014), 582–594.
10. G. G. Jorge and N. Raul, Analysis of a model of bovine brucellosis using singular perturbations, J. Math. Biol., 33(1994), 211–223.
11. J. Zinsstag, F. Roth, D. Orkhon, et al., A model of animalChuman brucellosis transmission in Mongolia, Prev. Vet. Med., 69(2005), 77–95.
12. B. Alnseba, B. Chahrazed and M. Pierre, A model for ovine brucellosis incorporating direct and indirect transmission, J. Biol. Dyn., 4(2010), 2–11.
13. Q. Hou, X. D. Sun, J. Zhang, et al., Modeling the transmission dynamics of brucellosis in Inner Mongolia Autonomous Region, China, Math. Biosci., 242(2013), 51–58.
14. Q. Hou, X. D. Sun, Y. M. Wang, et al., Global properties of a general dynamic model for animal diseases: A case study of brucellosis and tuberculosis transmission, J. Math. Anal. Appl., 414 (2014), 424–433.
15. W. Beauvais, I. Musallam and J. Guitian, Vaccination control programs for multiple livestock host species: An agestratified, seasonal transmission model for brucellosis control in endemic settings, Paras. Vector, 9(2016), 55.
16. P. Lou, L. Wang, X. Zhang, et al., Modelling Seasonal Brucellosis Epidemics in Bayingolin Mongol Autonomous Prefecture of Xinjiang, China, 20102014, BioMed Res. Int., 2016(2016), 5103718.
17. D. O. Montiel, M. Bruce, K. Frankena, et al., Financial analysis of brucellosis control for smallscale goat farming in the Bajio region, Mexico, Prev. Vet. Med., 118(2015), 247–259.
18. L. Yang, Z. W. Bi, Z. Q. Kou, et al., Timeseries analysis on human brucellosis during 20042013 in Shandong province, China, Zoonoses Public Health, 62(2015), 228–235.
19. M. T. Li, G. Q. Sun, W. Y. Zhang, et al., Modelbased evaluation of strategies to control brucellosis in China, Int. J. Env. Res. Pub. He., 14(2017), 295.
20. M. T. Li, Z. Jin, G. Q. Sun, et al., Modeling direct and indirect disease transmission using multigroup model, J. Math. Anal. Appl., 446(2017), 1292–1309.
21. O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28(1990), 365–382.
22. P. van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180(2002), 29–48.
23. O. Diekmann, J. A. P. Heesterbeek and M. G. Roberts, The construction of nextgeneration matrices for compartmental epidemic models, J. R. Soc. Interface, 7(2010), 873–885.
24. M. Y. Li and Z. Shuai, Globalstability problem for coupled systems of differential equations on networks, J. Diff. Equat., 248(2010), 1–20.
25. J. P. Lasalle, The stability of dynamical dystems, in: Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1976.
26. M. Y. Li and Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models, Canad. Appl. Math. Quart., 14(2006), 259–284.
27. H. Guo, M. Y. Li and Z. Shuai, A graphtheoretic approach to the method of global lyapunov functions, Proc. Amer. Math. Soc., 136(2008), 2793–2802.
28. S. Marino, I. B. Hogue, C. J. Ray, et al., A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theoret. Biol., 254(2008), 178–196.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)