
Mathematical Biosciences and Engineering, 2019, 16(5): 55315550. doi: 10.3934/mbe.2019275.
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Analyzing the control of dengue by releasing Wolbachiainfected male mosquitoes through a delay differential equation model
1 College of Mathematics and Information Sciences, Guangzhou University, Guangzhou, 510006, China
2 Center for Applied Mathematics, Guangzhou University, Guangzhou, 510006, China
Received: , Accepted: , Published:
Special Issues: Mathematical Modeling of MosquitoBorne Diseases
Keywords: dengue; Wolbachia; release ratio; sensitivity analysis; cytoplasmic incompatibility
Citation: Bo Zheng, Lihong Chen, Qiwen Sun. Analyzing the control of dengue by releasing Wolbachiainfected male mosquitoes through a delay differential equation model. Mathematical Biosciences and Engineering, 2019, 16(5): 55315550. doi: 10.3934/mbe.2019275
References:
 1. S. Bhatt, P. Gething, O. Brady, et al., The global distribution and burden of dengue, Nature, 496 (2013), 504–507.
 2. Y. Wang, X. Liu, C. Li, et al., A survey of insecticide resistance in Aedes albopictus (Diptera: Culicidae) during a 2014 dengue fever outbreak in Guangzhou, China, J. Econ. Entomol., 110 (2017), 239–244.
 3. F. Baldacchino, B. Caputo, F. Chandre, et al., Control methods against invasive Aedes mosquitoes in Europe: a review, Pest. Manag. Sci., 71 (2015), 1471–1485.
 4. J. Werren, Biology of Wolbachia, Ann. Rev. Entomol., 42 (1997), 587–609.
 5. G. Bian, D. Joshi, Y. Dong, et al., Wolbachia invades Anopheles stephensi populations and induces refractoriness to plasmodium infection, Science, 340 (2013), 748–751.
 6. Z. Xi, C. Khoo and S. Dobson, Wolbachia establishment and invasion in an Aedes aegypti laboratory population, Science, 310 (2005), 326–328.
 7. E. Waltz, US reviews plan to infect mosquitoes with bacteria to stop disease, Nature, 89 (2016), 450–451.
 8. M. Keeling, F. Jiggins and J. Read, The invasion and coexistence of competing Wolbachia strains, Heredity, 91 (2003), 382–388.
 9. B. Zheng, M. Tang and J. Yu, Modeling Wolbachia spread in mosquitoes through delay differential equations, SIAM J. Appl. Math., 74 (2014), 743–770.
 10. B. Zheng, M. Tang, J. Yu, et al., Wolbachia spreading dynamics in mosquitoes with imperfect maternal transmission, J. Math. Biol., 76 (2018), 235–263.
 11. L. Cai, S. Ai and J. Li, Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes, SIAM J. Appl. Math., 74 (2014), 1786–1809.
 12. L. Cai, S. Ai and G. Fan, Dynamics of delayed mosquitoes populations models with two different strategies of releasing sterile mosquitoes, Math. Biosci. Eng., 15 (2018), 1181–1202.
 13. M. Huang, J. Luo, L. Hu, et al., Assessing the efficiency of Wolbachia driven Aedes mosquito suppression by delay differential equations, J. Theor. Biol., 440 (2018), 1–11.
 14. Y. Li and X. Liu, An impulsive model for Wolbachia infection control of mosquitoborne diseases with general birth and death rate functions, Nonlinear Anal: RWA, 37 (2017), 412–432.
 15. L. Hu, M. Huang, M. Tang, et al., Wolbachia spread dynamics in stochastic environments, Theor. Popul. Biol., 106 (2015), 32–44.
 16. M. Turelli and N. Barton, Deploying denguesuppressing Wolbachia: Robust models predict slow but effective spatial spread in Aedes aegypti, Theor. Popul. Biol., 115 (2017), 45–60.
 17. E. Newton and P. Reiter, A model of the transmission of dengue fever with an evaluation of the impact of ultralow volume (ULV) insecticide applications on dengue epidemics, Am. J. Trop. Med. Hyg., 47 (1992), 709–720.
 18. M. Atkinson, Z. Su, N. Alphey, et al., Analyzing the control of mosquitoborne diseases by a dominant lethal genetic system, Proc. Natl. Acad. Sci. USA, 104 (2007), 9540–9545.
 19. S. Pinho, C. Ferreira, L. Esteva, et al., Modelling the dynamics of dengue real epidemics, Phil. Trans. R. Soc. A, 368 (2010), 5679–5693.
 20. L. Xue, X. Fang and J. Hyman, Comparing the effectiveness of different strains of Wolbachia for controlling chikungunya, dengue fever, and zika, PLoS Neglect. Trop. D, 12 (2018), e0006666.
 21. J. Zhang, C. Yang, Z. Jin, et al., Dynamics analysis of SIR epidemic model with correlation coefficients and clustering coefficient in networks, J. Theor. Biol., 449 (2018), 1–13.
 22. L. Zou, J. Chen, X. Feng, et al., Analysis of a dengue model with vertical transmission and application to the 2014 dengue outbreak in Guangdong Province, China, B. Math. Biol., 80 (2018), 2633–2651.
 23. C. Craig, The Etiology of Dengue Fever, J. Am. Med. Assoc., 75 (1920), 1171–1176.
 24. C. Dye, Models for the population dynamics of the yellow fever mosquito, Aedes aegypti, J. Anim. Ecol., 53 (1984), 247–268.
 25. F. Coutinhoa, M. Burattinia, L. Lopeza, et al., Threshold conditions for a nonautonomous epidemic system describing the population dynamics of Dengue, Bull. Math. Biol., 68 (2006), 2263–2282.
 26. M. Guzman and E. Harris, Dengue, Lancet, 385 (2015), 453–465.
 27. M. Chan and M. Johansson, The incubation periods of dengue viruses, PLoS One, 7 (2012), e50972.
 28. H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Volume 57, Springer, New York, 2011.
 29. National Bureau of Statistics of China, National Data, Accessed 20 Jan 2019. Available from: http://data.stats.gov.cn/.
 30. T. Scott, A. Morrison, L. Lorenz, et al., Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: population dynamics, J. Med. Entomol., 37 (2000), 77–88.
 31. C. Paupy, B. Ollomo, B. Kamgang, et al., Comparative role of Aedes albopictus and Aedes aegypti in the emergence of Dengue and Chikungunya in central Africa, VectorBorne and Zoonotic Diseases, 10 (2010), 259–266.
 32. Y. Ye, S. Chenoweth, A. Carrasco, et al., Evolutionary potential of the extrinsic incubation period of dengue virus in Aedes aegypti, Evolution, 70 (2016), 2459–2469.
 33. J. Yu, Modeling mosquitoes population suppression based on delay differential equations, SIAM J. Appl. Math., 78 (2018), 3168–3187.
Reader Comments
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *