Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Numerical simulation of submerged flow bridge scour under dam-break flow using multi-phase SPH method

1 Department of Civil Engineering, University of Transport and Communications, 3 Cau Giay, Lang Thuong, Dong Da, Hanoi, Vietnam
2 Mines Douai, Department of Polymers and Composites Technology & Mechanical Engineering, 941 rue Charles Bourseul, CS 10838, F-59508 Douai Cedex France

Special Issues: Mathematical Methods in Civil Engineering

This paper presents a coupled two-phase flow model for simulation of submerged flow bridge scour under dam-break flows considering the sediment-fluid interaction. The Smoothed Particle Hydrodynamics (SPH) method is employed to simulate the sediment and fluid movements based on the Newtonian and non-Newtonian fluids, respectively, in the framework of two-phase flow modeling. The SPH simulation based on the treatment of Bingham-type Herschel-Bulkley-Papanastasiou constitutive model and the Drucker-Prager yield criterion is used to predict the sediment transport and the scour depth time histories under a submerged bridge deck. The influence of parameters such as geometry of the bridge deck and flow conditions on the scour depth is also investigated.
  Figure/Table
  Supplementary
  Article Metrics

Keywords smoothed particle hydrodynamics; multi-phase flow model; pressured scour; scour depth; sediment transport

Citation: Huu Thuan Nguyen, Tu Anh Do, Benoît Cosson. Numerical simulation of submerged flow bridge scour under dam-break flow using multi-phase SPH method. Mathematical Biosciences and Engineering, 2019, 16(5): 5395-5418. doi: 10.3934/mbe.2019269

References

  • 1. L. M. Abed, Local scour around bridge piers in pressure flow, Ph.D dissertation, Colorado State Univ. Fort Collins, Colo, (1991).
  • 2. J. S. Jones, D. A. Bertoldi and E. R. Umbrell, Preliminary studies of pressure-flow scour, ASCE Conf. Hydr. Engrg., (1993).
  • 3. L. A. Arneson, The effect of pressure-flow on local scour in bridge openings, Ph.D thesis, Dept. Civil Eng., Colorado State Univ. Fort Collins, Colo, (1997).
  • 4. E. R. Umbrell, G. K. Young, S. M. Stein, et al., Clear-water contraction scour under bridges in pressure flow, J. Hydraul. Eng., 124 (1998), 236–240.
  • 5. D. A. Lyn, Pressure-flow scour: A reexamination of the HEC-18 equation, J. Hydraul. Eng. ASCE, 137 (2008), 1015–1020.
  • 6. J. Guo, K. Kerenyi and J. E. Pagan-Ortiz, Bridge pressure flow scour for clear water conditions, FHWA-HRT09-041, United States Department of Transportation, Washington, DC, (2009).
  • 7. E. M. Hahn and D. A. Lyn, Anomalous contraction scour? Vertical-contraction case, J. Hydraul. Eng. ASCE, 136 (2010), 137–141.
  • 8. Y. Zhai, Time-dependent scour depth under bridge-submerged flow, Civil Engineering, University of Nebraska-Lincoln, (2010).
  • 9. S. Y. Kumcu, Steady and unsteady pressure scour under bridges at clear-water conditions, Can. J. Civil Eng., 43 (2016), 334–342.
  • 10. O. E. A. Agertz, Fundamental differences between SPH and grid methods, Mon. Not. R. Astron. Soc., 380 (2007), 963–978.
  • 11. J. J. Monaghan, Smoothed particle hydrodynamics, Rep. Prog. Phys., 68 (2005), 1703–1759.
  • 12. R. A. Gingold and J. J. Monaghan, Smoothed particle hydrodynamics theory and application to no spherical stars, Mon. Not. R. Astron. Soc., 181 (1997), 375–389.
  • 13. L. B. Lucy, A numerical approach to the testing of the fission hypothesis, Astron. J., 82 (1997), 1013–1024.
  • 14. N. Q. Bao, Fiabilité des installations industrielles sous impact de fragment de structures –Effet Domino, Ph.D thesis, Paris–Est, France, (2009).
  • 15. F. Xu, Y. Zhao, R. Yan, et al., Multidimensional discontinuous SPH method and its application to metal penetration analysis, J. Numer. Meth. Engng., 93 (2013), 1125–1146.
  • 16. K. Shintatea and H. Sekine, Numerical simulation of hypervelocity impacts of a projectile on laminated composite plate targets by means of improved SPH method., Compos. Part A-Appl. S., 35 (2004), 683–691.
  • 17. H. T. Nguyen, Contribution on modeling of the rotational molding process, Ph.D thesis, Lille University of Science and Technology., France, (2014).
  • 18. H. T. Nguyen, C. Benoît, L. Marie-France, et al., Numerical simulation of reactive polymer flow during rotational molding using smoothed particle hydrodynamics method and experimental verification, Int. J. Mater. Form., 11 (2017), 583–592.
  • 19. S. Shao and E. Y. M. Lo, Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface, Adv. Water Resour., 26 (2003), 787–800.
  • 20. H. Gotoh and A. Khayyer, On the state-of-the-art of particle methods for coastal and ocean engineering, Coast. Eng. J., 60 (2018), 79–103.
  • 21. H. Ha, K. Sakoand R. Fukagawa, Numerical simulation of soil–water interaction using smoothed particle hydrodynamics (SPH) method, J. Terramechanics, 44 (2007), 339–346.
  • 22. G. Fourtakas, B. D. Rogers and D. Laurence, 3-D SPH Modelling of Sediment Scouring Induced by Rapid Flows, 9th International SPHERIC SPH Workshop, Paris, France, (2014).
  • 23. H. Z. Elizabeth, G. Fourtakas, B. D. Rogers, et al., Multi-phase SPH model for simulation of erosion and scouring by means of the Shields and Drucker-Prager criteria, Adv. Water Resour., 117 (2018), 98–114.
  • 24. G. Fourtakas and B. D. Rogers, Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using Smoothed Particle Hydrodynamics (SPH) accelerated with a Graphics Processing Unit (GPU), Multi-phase SPH model for simulation of erosion and scouring by means of the Shields and Drucker-Prager criteria, Adv. Water Resour., 92 (2016), 186–199.
  • 25. G. Fourtakas, Modelling multi-phase flows in Nuclear Decommissioning using SPH, Ph.D thesis, University of Manchester, United Kingdom, (2016).
  • 26. Y. Zech, S. Soares-Frazão, B. Spinewine, et al., Dam-break induced sediment movement: Experimental approaches and numerical modelling, J. Hydraul. Res., 46 (2008), 176–190.
  • 27. S. Ovaysi and M. Piri, Multi-GPU Acceleration of Direct Pore-Scale Modeling of Fluid Flow in Natural Porous Media, Comput. Phys. Commun., 183 (2012), 1890–1898.
  • 28. A. Khayyer, H. Gotoh, Y. Shimizu, et al., An Enhanced Particle Method for Simulation of Fluid Flow Interactions with Saturated Porous Media, J. Japan Soc. Civil Eng. Ser. B2, 73 (2017), 841–846.
  • 29. A. Khayyer, H. Gotoh, Y. Shimizu, et al., Development of a projection-based SPH method for numerical wave flume with porous media of variable porosity, Coast. Eng., 140 (2018), 1–22.
  • 30. S. Manenti, S. Sibilla, M. Gallati, et al., SPH Simulation of Sediment Flushing Induced by a Rapid Water Flow, J. Hydraul. Eng. ASCE, 138 (2012), 272–284.
  • 31. S. Marrone, A. Colagrossi, J. S. Park, et al., Challenges on the Numerical Prediction of Slamming Loads on LNG Tank Insulation Panels, Ocean Eng., 141 (2017), 512–530.
  • 32. B. Bouscasse, B. Bouscasse, A. Colagrossi, et al., SPH Modelling of Viscous Flow past a Circular Cylinder Interacting with a Free Surface, Comput. Fluids, 146 (2017), 190–212.
  • 33. H. Bui and G. D. Nguyen, A Coupled Fluid-Solid SPH Approach to Modelling Flow through Deformable Porous Media, Int. J. Solids Struct., 125 (2017), 244–264.
  • 34. S. Zou, Coastal Sediment Transport Simulation by Smoothed Particle Hydrodynamics, Ph.D thesis, The Johns Hopkins University, Baltimore, Maryland, (2007).
  • 35. M. X. Rodriguez-Paz and J. Bonet, A corrected smooth particle hydrodynamics method for the simulation of debris flows, Numer. Meth. Part. D. E., 20 (2004), 140–163.
  • 36. C. Ulrich, M. Leonardiand T. Rung, Multi-physics SPH simulation of complex marine-engineering hydrodynamic problems, Ocean Eng., 64 (2013), 109–121.
  • 37. Y. Shi, S. Li, H. Chen, et al., Improved SPH Simulation of Spilled Oil Contained by Flexible Floating Boom under Wave–Current Coupling Condition, J. Fluid. Struct., 76 (2018), 272–300.
  • 38. C. Altomare, J. M. Domínguez, A. J. C. Crespo, et al., Hybridization of the Wave Propagation Model SWASH and the Meshfree Particle Method SPH for Real Coastal Applications, Coast. Eng. J., 57 (2015), 1-34.
  • 39. A. Ghaïtanellis, V. Damien, F. Martin, et al., A SPH Elastic-Viscoplastic Model for Granular flows and Bed-Load Transport, Adv. Water Resour., 111 (2018), 156–173.
  • 40. E. Harada, H. Ikari, Y. Shimizu, et al., Numerical Investigation of the Morphological Dynamics of a Step and Pool Riverbed Using DEM-MPS, J. Hydraul. Eng., 144 (2018), 04017058.
  • 41. L. Wang, A. Khayyer, H. Gotoh, et al., Enhancement of pressure calculation in projection-based particle methods by incorporation of background mesh scheme, Appl. Ocean Res., 86 (2019), 320–339.
  • 42. S. Koshizuka and Y. Oka, Moving-particle semi-implicit method for fragmentation of incompressible fluid, Nucl. Sci. Eng., 123 (1996), 421–434.
  • 43. Y. Shimizu, H. Gotoh and A. Khayyer, An MPS-based particle method for simulation of multiphase flows characterized by high density ratios by incorporation of space potential particle concept, Comput. Math. Appl., 76 (2018), 1108–1129.
  • 44. E. Harada, H. Gotoh, H. Ikari, et al., Numerical Simulation for Sediment Transport Using MPS-DEM Coupling Model, Adv. Water Resour., (2017).
  • 45. E. Harada, H. Ikari, A. Khayyer, et al., Numerical simulation for swash morphodynamics by DEM–MPS coupling model, Coast. Eng. J., 61 (2019), 2–14.
  • 46. Y. He, E. A. Bayly, A. Hassanpour, et al., A GPU-based coupled SPH-DEM method for particle-fluid flow with free surfaces, Powder Technol., 338 (2018), 548–562.
  • 47. H. Gotoh, S. Shao and T. Memita, SPH-LES model for numerical investigation of wave interaction with partially immersed breakwater, Coast. Eng., 46 (2004), 39–63.
  • 48. S. Shao and H. Gotoh, Simulating Coupled Motion of Progressive Wave and Floating Curtain Wall by SPH-LES Model, Coast. Eng. J., 46 (2004), 171–202.
  • 49. P. W. Cleary, Modelling confined multi-material heat and mass flows using SPH, Appl. Math. Model., 22 (1998), 981–993.

 

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved