
Mathematical Biosciences and Engineering, 2019, 16(5): 49995021. doi: 10.3934/mbe.2019252
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Effects of quantum noises on χ statebased quantum steganography protocol
1 Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, 210044, P. R. China
2 School of Computer & Software, Nanjing University of Information Science and Technology, Nanjing 210044, P. R. China
3 School of Computer Science, Xi’an Polytechnic University, Xi’an 710048, P. R. China
4 School of Electronic Engineering, Dublin City University, Dublin, Ireland
Received: , Accepted: , Published:
Special Issues: Information Multimedia Hiding & Forensics based on Intelligent Devices
References
1. W. J. Liu, P. P. Gao, W. B. Yu, et al., Quantum Relief algorithm, Quantum Inf. Process., 17 (2018), 280.
2. W. J. Liu, H. B. Wang, G. L. Yuan, et al., Multiparty quantum sealedbid auction using single photons as message carrier, Quantum Inf. Process., 15 (2016), 869–879.
3. W. J. Liu, Z. Y. Chen, J. S. Liu, et al., Fullblind delegating private quantum computation, CMCComput. Mater. Con., 56 (2018), 211–223.
4. W. J. Liu, Y. Xu, C. N. Yang, et al., An efficient and secure arbitrary nparty quantum key agreement protocol using Bell states, Int. J. Theor. Phys., 57 (2018), 195–207.
5. X. B. Chen, X. Tang, G. Xu, et al., Cryptanalysis of secret sharing with a single dlevel quantum system, Quantum Inf. Process., 17 (2018), 225.
6. J. W. Wang, T. Li, X. Y. Luo, et al., Identifying computer generated images based on quaternion central moments in color quaternion wavelet domain, IEEE T. Circ. Syst. Vid., (2018), 1.
7. Y. Zhang, C. Qin, W. M. Zhang, et al., On the faulttolerant performance for a class of robust image steganography, Signal Process., 146 (2018), 99–111.
8. X. Y. Luo, X. F. Song, X. L. Li, et al., Steganalysis of HUGO steganography based on parameter recognition of syndrometrelliscodes, Multimed. Tools Appl., 75 (2016), 13557–13583.
9. T. Qiao, R. Shi, X. Y. Luo, et al., Statistical modelbased detector via texture weight map: application in resampling authentication, IEEE T. Multimedia, 21 (2019), 1077–1092.
10. Y. Y. Ma, X. Y. Luo, X. L. Li, et al., Selection of rich model steganalysis features based on decision rough set positive region reduction, IEEE T. Circ. Syst. Vid., 29 (2019), 336–350.
11. Z. G. Qu, J. Keeney, S. Robitzsch, et al., Multilevel pattern mining architecture for automatic network monitoring in heterogeneous wireless communication networks, China Commun., 13 (2016), 106–116.
12. G. Xu, X. B. Chen and J. Li, Network coding for quantum cooperative multicast, Quantum Inf. Process., 14 (2015), 4297–4322.
13. C. H. Bennett, G. Brassard, C. Crepeau, et al., Teleporting an unknown quantum state via dual classical and EinsteinPodolskyRosen channels, Phys. Rev. Lett., 70 (1993), 1895–1899.
14. X. B. Chen, Y. R. Sun, G. Xu, et al., Controlled bidirectional remote preparation of threequbit state, Quantum Inf. Process., 16 (2017), 244.
15. M. M. Wang, C. Yang and R. Mousoli, Controlled cyclic remote state preparation of arbitrary qubit states, CMCComput. Mater. Con., 55 (2018), 321–329.
16. C. H. Bennett and G. Brassard, Quantum cryptography: Public key distribution and coin tossing, Theor. Comput. Sci., 560 (2014), 7–11.
17. M. Hillery, V. Buzek and A. Berthiaume, Quantum secret sharing, Phys. Rev. A, 59 (1999), 1829–1834.
18. M. Curty and D. J. Santos, Quantum authentication of classical messages, Phys. Rev. A, 64 (2012), 168–1.
19. B. M. Terhal, D. P. Divincenzo and D. W. Leung, Hiding bits in Bell states, Phys. Rev. Lett., 86 (2001), 5807–5810.
20. D. P. Divincenzo, D. W. Leung and B. M. Terhal, Quantum data hiding, IEEE T. Inform. Theory, 48 (2001), 580–598.
21. B. A. Shaw and T. A. Brun, Quantum steganography with noisy quantum channels, Phys. Rev. A, 83 (2011), 498–503.
22. B. A. Shaw and T. A. Brun, Hiding quantum information in the perfect code, preprint, arXiv:1007.0793.
23. T. Mihara, Quantum steganography embedded any secret text without changing the content of cover data, J. Quantum Inf. Sci., 2 (2012), 10–14.
24. Z. H. Wei, X. B. Chen, X. X. Niu, et al., The quantum steganography protocol via quantum noisy channels, Int. J. Theor. Phys., 54 (2015), 2505–2515.
25. T. Mihara, Quantum steganography using prior entanglement, Phys. Lett. A, 379 (2015), 952–955.
26. Z. G. Qu, T. C. Zhu and J. W. Wang, A novel quantum steganography based on Brown states, CMCComput. Mater. Con., 1 (2018), 47–59.
27. Z. G. Qu, Z. W. Cheng, W. J. Liu, et al., A novel quantum image steganography algorithm based on exploiting modification direction, Multimed. Tools Appl., 78 (2019), 7981–8001.
28. Z. G. Qu, Z. W. Chen, W. B. Yu, et al., Matrix codingbased quantum image steganography algorithm, IEEE Access, 1 (2019), 99–114.
29. G. C. Guo and G. P. Guo, Quantum data hiding with spontaneous parameter downconversion, Phys. Rev. A, 68 (2003), 044303.
30. K. Martin, Steganographic communication with quantum information, Lecture Notes in Computer Science(LNCS), 4567 (2007), 32–49.
31. Z. G. Qu, X. B. Chen, X. J. Zhou, et al., Novel quantum steganography with large payload, Opt. Commun., 283 (2010), 4782–4786.
32. Z. G. Qu, X. B. Chen, M. X. Luo, et al., Quantum steganography with large payload based on entanglement swapping of χtype entangled states, Opt. Commun., 284 (2011), 2075–2082.
33. Z. H. Wei, X. B. Chen, X. X. Niu, et al., A novel quantum steganography protocol based on probability measurements, Int. J. Quantum Inf., 11 (2013), 1350068.
34. Z. H. Wei, X. B. Chen, X. X. Niu, et al., Least significant qubit (LSQb) information hiding algorithm for quantum image, Int. J. Theor. Phys., 54 (2015), 32–38.
35. S. Heidari and E. Farzadnia, A novel quantum lsbbased steganography method using the gray code for colored quantum images, Quantum Inf. Process., 16 (2017), 242.
36. Z. G. Qu, Z. W. Cheng, M. X. Luo, et al., A robust quantum watermark algorithm based on quantum logpolar images, Int. J. Theor. Phys., 56 (2017), 3460–3476.
37. Z. G. Qu, S. Y. Chen and S. Ji, A novel quantum video steganography protocol with large payload based on mcqi quantum video, Int. J. Theor. Phys., 56 (2017), 1–19.
38. R. Laflamme, C. Miquel, J. P. Paz, et al., Perfect quantum error correcting code, Phys. Rev. Lett., 77 (1996), 198–201.
39. L. M. Duan and G. C. Guo, Preserving coherence in quantum computation by pairing quantum bits, Physics, 79 (1998), 1953–1956.
40. H. Zheng, S. Y. Zhu and M. S. Zubairy, Quantum zeno and antizeno effects: without the rotating wave approximation, Phys. Rev. Lett., 101 (2008), 200404.
41. Z. G. Qu, S. Y. Chen, S. Ji, et al., Antinoise bidirectional quantum steganography qrotocol with large payload, Int. J. Theor. Phys., 57 (2018), 1–25.
42. Z. G. Qu, S. Y. Wu, W. J. Liu, et al., Analysis and Improvement of Steganography Protocol Based on Bell States in Noise Environment, CMCComput. Mater. Con., 59 (2019), 607–624.
43. N. K. Alexander and K. Kyle, Decoherence suppression by quantum measurement reversal, Phys. Rev. A, 81 (2010), 040103.
44. X. W. Guan, X. B. Chen and L. C. Wang, Joint remote preparation of an arbitrary twoqubit state in noisy environments, Int. J. Theor. Phys., 53 (2014), 2236–2245.
45. F. Raphael and R. Gustavo, Fighting noise with noise in realistic quantum teleportation, Phys. Rev. A, 92 (2015), 012338.
46. M. M. Wang and Z. G. Qu, Effect of quantum noise on deterministic joint remote state preparation of a qubit state via a GHZ channel, Quantum Inf. Process., 15 (2016), 4805–4818.
47. M. M. Wang, Z. G. Qu and W. Wang, Effect of noise on deterministic joint remote preparation of an arbitrary twoqubit state, Quantum Inf. Process., 16 (2017), 140.
48. M. M. Wang, Z. G. Qu, W. Wang, et al., Effect of noise on joint remote preparation of multiqubit state, Int. J. Quantum Inf., 15 (2017), 1750012.
49. Z. G. Qu, S. Y. Wu, M. M. Wang, et al., Effect of quantum noise on deterministic remote state preparation of an arbitrary twoparticle state via various quantum entangled channels, Quantum Inf. Process., 16 (2017), 306–331.
50. L. Sun, S. Y. Wu, Z. G. Qu, et al., The effect of quantum noise on two different deterministic remote state preparation of an arbitrary threeparticle state protocols, Quantum Inf. Process., 17 (2018), 283–301.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)