Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Effects of quantum noises on χ state-based quantum steganography protocol

1 Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, 210044, P. R. China
2 School of Computer & Software, Nanjing University of Information Science and Technology, Nanjing 210044, P. R. China
3 School of Computer Science, Xi’an Polytechnic University, Xi’an 710048, P. R. China
4 School of Electronic Engineering, Dublin City University, Dublin, Ireland

Special Issues: Information Multimedia Hiding & Forensics based on Intelligent Devices

Since the good application of quantum mechanism in the field of communication, quantum secure communication has become a research hotspot. The existing quantum secure communication protocols usually assume that the quantum channel is noise-free. But the inevitable quantum noise in quantum channel will greatly interferes the transmission of quantum bits or quantum states, seriously damaging the security and reliability of the quantum system. This paper analyzes and discusses the performance of a χ state based steganography protocol under four main quantum noises, i.e., Amplitude Damping (AD), Phase damping (Phs), Bit Flip (BF) and Depolarizing (D). The results show that the protocol is least affected by amplitude damping noise when only the sender’s first transmission in quantum channel is affected by quantum noise. Then, we analyze the performance of the protocol when both the sender’s two transmissions are affected by quantum noise, and find that the specific combination of different noises will increase the performance of the protocol in quantum noisy channel. This means that an extra quantum noise can be intentionally added to quantum channel according to the noise intensity, so that the protocol can improve performance under the influence of quantum noises. Finally, the detailed mathematical analysis proves the conclusions.
  Figure/Table
  Supplementary
  Article Metrics

Keywords quantum channel noise; quantum steganography; χ state; fidelity

Citation: Zhiguo Qu, Shengyao Wu, Le Sun, Mingming Wang, Xiaojun Wang. Effects of quantum noises on χ state-based quantum steganography protocol. Mathematical Biosciences and Engineering, 2019, 16(5): 4999-5021. doi: 10.3934/mbe.2019252

References

  • 1. W. J. Liu, P. P. Gao, W. B. Yu, et al., Quantum Relief algorithm, Quantum Inf. Process., 17 (2018), 280.
  • 2. W. J. Liu, H. B. Wang, G. L. Yuan, et al., Multiparty quantum sealed-bid auction using single photons as message carrier, Quantum Inf. Process., 15 (2016), 869–879.
  • 3. W. J. Liu, Z. Y. Chen, J. S. Liu, et al., Full-blind delegating private quantum computation, CMC-Comput. Mater. Con., 56 (2018), 211–223.
  • 4. W. J. Liu, Y. Xu, C. N. Yang, et al., An efficient and secure arbitrary n-party quantum key agreement protocol using Bell states, Int. J. Theor. Phys., 57 (2018), 195–207.
  • 5. X. B. Chen, X. Tang, G. Xu, et al., Cryptanalysis of secret sharing with a single d-level quantum system, Quantum Inf. Process., 17 (2018), 225.
  • 6. J. W. Wang, T. Li, X. Y. Luo, et al., Identifying computer generated images based on quaternion central moments in color quaternion wavelet domain, IEEE T. Circ. Syst. Vid., (2018), 1.
  • 7. Y. Zhang, C. Qin, W. M. Zhang, et al., On the fault-tolerant performance for a class of robust image steganography, Signal Process., 146 (2018), 99–111.
  • 8. X. Y. Luo, X. F. Song, X. L. Li, et al., Steganalysis of HUGO steganography based on parameter recognition of syndrome-trellis-codes, Multimed. Tools Appl., 75 (2016), 13557–13583.
  • 9. T. Qiao, R. Shi, X. Y. Luo, et al., Statistical model-based detector via texture weight map: application in re-sampling authentication, IEEE T. Multimedia, 21 (2019), 1077–1092.
  • 10. Y. Y. Ma, X. Y. Luo, X. L. Li, et al., Selection of rich model steganalysis features based on decision rough set -positive region reduction, IEEE T. Circ. Syst. Vid., 29 (2019), 336–350.
  • 11. Z. G. Qu, J. Keeney, S. Robitzsch, et al., Multilevel pattern mining architecture for automatic network monitoring in heterogeneous wireless communication networks, China Commun., 13 (2016), 106–116.
  • 12. G. Xu, X. B. Chen and J. Li, Network coding for quantum cooperative multicast, Quantum Inf. Process., 14 (2015), 4297–4322.
  • 13. C. H. Bennett, G. Brassard, C. Crepeau, et al., Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett., 70 (1993), 1895–1899.
  • 14. X. B. Chen, Y. R. Sun, G. Xu, et al., Controlled bidirectional remote preparation of three-qubit state, Quantum Inf. Process., 16 (2017), 244.
  • 15. M. M. Wang, C. Yang and R. Mousoli, Controlled cyclic remote state preparation of arbitrary qubit states, CMC-Comput. Mater. Con., 55 (2018), 321–329.
  • 16. C. H. Bennett and G. Brassard, Quantum cryptography: Public key distribution and coin tossing, Theor. Comput. Sci., 560 (2014), 7–11.
  • 17. M. Hillery, V. Buzek and A. Berthiaume, Quantum secret sharing, Phys. Rev. A, 59 (1999), 1829–1834.
  • 18. M. Curty and D. J. Santos, Quantum authentication of classical messages, Phys. Rev. A, 64 (2012), 168–1.
  • 19. B. M. Terhal, D. P. Divincenzo and D. W. Leung, Hiding bits in Bell states, Phys. Rev. Lett., 86 (2001), 5807–5810.
  • 20. D. P. Divincenzo, D. W. Leung and B. M. Terhal, Quantum data hiding, IEEE T. Inform. Theory, 48 (2001), 580–598.
  • 21. B. A. Shaw and T. A. Brun, Quantum steganography with noisy quantum channels, Phys. Rev. A, 83 (2011), 498–503.
  • 22. B. A. Shaw and T. A. Brun, Hiding quantum information in the perfect code, preprint, arXiv:1007.0793.
  • 23. T. Mihara, Quantum steganography embedded any secret text without changing the content of cover data, J. Quantum Inf. Sci., 2 (2012), 10–14.
  • 24. Z. H. Wei, X. B. Chen, X. X. Niu, et al., The quantum steganography protocol via quantum noisy channels, Int. J. Theor. Phys., 54 (2015), 2505–2515.
  • 25. T. Mihara, Quantum steganography using prior entanglement, Phys. Lett. A, 379 (2015), 952–955.
  • 26. Z. G. Qu, T. C. Zhu and J. W. Wang, A novel quantum steganography based on Brown states, CMC-Comput. Mater. Con., 1 (2018), 47–59.
  • 27. Z. G. Qu, Z. W. Cheng, W. J. Liu, et al., A novel quantum image steganography algorithm based on exploiting modification direction, Multimed. Tools Appl., 78 (2019), 7981–8001.
  • 28. Z. G. Qu, Z. W. Chen, W. B. Yu, et al., Matrix coding-based quantum image steganography algorithm, IEEE Access, 1 (2019), 99–114.
  • 29. G. C. Guo and G. P. Guo, Quantum data hiding with spontaneous parameter down-conversion, Phys. Rev. A, 68 (2003), 044303.
  • 30. K. Martin, Steganographic communication with quantum information, Lecture Notes in Computer Science(LNCS), 4567 (2007), 32–49.
  • 31. Z. G. Qu, X. B. Chen, X. J. Zhou, et al., Novel quantum steganography with large payload, Opt. Commun., 283 (2010), 4782–4786.
  • 32. Z. G. Qu, X. B. Chen, M. X. Luo, et al., Quantum steganography with large payload based on entanglement swapping of χ-type entangled states, Opt. Commun., 284 (2011), 2075–2082.
  • 33. Z. H. Wei, X. B. Chen, X. X. Niu, et al., A novel quantum steganography protocol based on probability measurements, Int. J. Quantum Inf., 11 (2013), 1350068.
  • 34. Z. H. Wei, X. B. Chen, X. X. Niu, et al., Least significant qubit (LSQb) information hiding algorithm for quantum image, Int. J. Theor. Phys., 54 (2015), 32–38.
  • 35. S. Heidari and E. Farzadnia, A novel quantum lsb-based steganography method using the gray code for colored quantum images, Quantum Inf. Process., 16 (2017), 242.
  • 36. Z. G. Qu, Z. W. Cheng, M. X. Luo, et al., A robust quantum watermark algorithm based on quantum log-polar images, Int. J. Theor. Phys., 56 (2017), 3460–3476.
  • 37. Z. G. Qu, S. Y. Chen and S. Ji, A novel quantum video steganography protocol with large payload based on mcqi quantum video, Int. J. Theor. Phys., 56 (2017), 1–19.
  • 38. R. Laflamme, C. Miquel, J. P. Paz, et al., Perfect quantum error correcting code, Phys. Rev. Lett., 77 (1996), 198–201.
  • 39. L. M. Duan and G. C. Guo, Preserving coherence in quantum computation by pairing quantum bits, Physics, 79 (1998), 1953–1956.
  • 40. H. Zheng, S. Y. Zhu and M. S. Zubairy, Quantum zeno and anti-zeno effects: without the rotating- wave approximation, Phys. Rev. Lett., 101 (2008), 200404.
  • 41. Z. G. Qu, S. Y. Chen, S. Ji, et al., Anti-noise bidirectional quantum steganography qrotocol with large payload, Int. J. Theor. Phys., 57 (2018), 1–25.
  • 42. Z. G. Qu, S. Y. Wu, W. J. Liu, et al., Analysis and Improvement of Steganography Protocol Based on Bell States in Noise Environment, CMC-Comput. Mater. Con., 59 (2019), 607–624.
  • 43. N. K. Alexander and K. Kyle, Decoherence suppression by quantum measurement reversal, Phys. Rev. A, 81 (2010), 040103.
  • 44. X. W. Guan, X. B. Chen and L. C. Wang, Joint remote preparation of an arbitrary two-qubit state in noisy environments, Int. J. Theor. Phys., 53 (2014), 2236–2245.
  • 45. F. Raphael and R. Gustavo, Fighting noise with noise in realistic quantum teleportation, Phys. Rev. A, 92 (2015), 012338.
  • 46. M. M. Wang and Z. G. Qu, Effect of quantum noise on deterministic joint remote state preparation of a qubit state via a GHZ channel, Quantum Inf. Process., 15 (2016), 4805–4818.
  • 47. M. M. Wang, Z. G. Qu and W. Wang, Effect of noise on deterministic joint remote preparation of an arbitrary two-qubit state, Quantum Inf. Process., 16 (2017), 140.
  • 48. M. M. Wang, Z. G. Qu, W. Wang, et al., Effect of noise on joint remote preparation of multi-qubit state, Int. J. Quantum Inf., 15 (2017), 1750012.
  • 49. Z. G. Qu, S. Y. Wu, M. M. Wang, et al., Effect of quantum noise on deterministic remote state preparation of an arbitrary two-particle state via various quantum entangled channels, Quantum Inf. Process., 16 (2017), 306–331.
  • 50. L. Sun, S. Y. Wu, Z. G. Qu, et al., The effect of quantum noise on two different deterministic remote state preparation of an arbitrary three-particle state protocols, Quantum Inf. Process., 17 (2018), 283–301.

 

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved