
Mathematical Biosciences and Engineering, 2019, 16(5): 45064525. doi: 10.3934/mbe.2019225
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
The effect of the needle exchange program on the spread of some sexually transmitted diseases
1 Bolyai Institute, University of Szeged, Aradi vértanúk tere 1., H6720 Szeged, Hungary
2 Department of Mathematics, Institute of Environmental Engineering Systems, Szent István University, Páter Károly utca 1., H2100 Gödöllõ, Hungary
Received: , Accepted: , Published:
Special Issues: Differential Equations in Mathematical Biology
References
1. W. Atkinson, J. Hamborsky, L. McIntyre, et al., Hepatitis B, in: J. E. Bennett, R. Dolin, M. J. Blaser (Eds.), Epidemiology and prevention of vaccinepreventable diseases (The Pink Book), pp. 211–234. Public Health Foundation, Washington DC, 2009.
2. N. Scherbaum, B. T. Baune, R. Mikolajczyk, et al., Prevalence and risk factors of syphilis infection among drug addicts, BMC Infect. Dis. 5 (2005), 6.
3. Centers for Disease Control and Prevention, HIV Basics, available at: https://www.cdc.gov/hiv/basics/index.html.
4. N. Loimer, R. Schmid and A. Springer (eds), Drug addiction and AIDS, Springer, 1991.
5. A. J. Saxon, D. A. Calsyn, S. Whittaker, et al., Sexual behaviors of intravenous drug users in treatment, J. Acquir. Immune Defic. Syndr., 4 (1991), 938–944.
6. Y. Yao, K. Smith, J. Chu, et al., Sexual behavior and risks for HIV infection and transmission among male injecting drug users in Yunnan, China, Int. J. Infect. Dis., 13 (2009), 154–161.
7. D. Hedrich, E. Kalamara, O. Sfetcu, et al., Human immunodeficiency virus among people who inject drugs: Is risk increasing in Europe?, Euro Surveill., 48 (2013).
8. S. Mushayabasa and C. P. Bhunu, Hepatitis C virus and intravenous drug misuse: a modeling approach, Int. J. Biomath., 7 (2014), 22 pp.
9. C. P. Bhunu and S. Mushayabasa, Assessing the effects of intravenous drug use on Hepatitis C transmission dynamics, J. Biol. Syst., 19 (2011), 447–460.
10. J. Gani, Needle sharing infections among heterogeneous IVDUS, Monatsh. Math., 135 (2002), 25–36.
11. Y. Ji, S. Kumar and S. Sethi, Needle exchange for controlling HIV spread under endogenous infectivity, INFOR Inf. Syst. Oper. Res., 55 (2017), 93–117.
12. E. H. Kaplan and R. Heimer, HIV prevalence among intravenous drug users: modelbased estimates from New Haven's legal needle exchange, J. Acquir. Immune Defic. Syndr., (1992), 163–169.
13. E. H. Kaplan and E. O'Keefe, Let the needles do the talking! Evaluating the New Haven needle exchange, Interfaces, 23 (1993), 7–26.
14. E. H. Kaplan and R. Heimer, A model based estimate of HIV infectivity via needle sharing, J. Acquir. Immune Defic. Syndr., 5 (1992), 1116–1118.
15. D. Greenhalgh and W. AlFwzan, An improved optimistic three stage model for the spread of HIV amongst injecting intravenous drug users, Discrete Contin. Dyn. Syst., Supplement 2009, 286–299.
16. D. Greenhalgh and F. Lewis, The general mixing of addicts and needles in a variableinfectivity needlesharing environment, J. Math. Biol., 44 (2002), 561–598.
17. F. Lewis and D. Greenhalgh, Three stage AIDS incubation period: a worst case scenario using addict–needle interaction assumptions, Math. Biosci., 169 (2001), 53–87.
18. E. H. Kaplan, Needles that kill: modeling human immunodeficiency virus transmission via shared drug injection equipment in shooting galleries, Rev. Infect. Dis., 11 (1989), 289–298.
19. R. F. Baggaley, MC. Boily, R. G. White, et al., Risk of HIV1 transmission for parental exposure and blood transfusion: a systematic review and metaanalysis, AIDS, 20 (2006), 805–812.
20. Centers for Disease Control and Prevention, HIV in the United States, 2017, available from: https://www.cdc.gov/hiv/statistics/overview/ataglance.html.
21. Centers for Disease Control and Prevention, HIV risk behaviors. Estimated peract probability of acquiring HIV from an infected source, by exposure act, available from: https://www.cdc.gov/hiv/risk/estimates/riskbehaviors.html
22. O. Diekmann, J. A. P. Heesterbeek and M. G. Roberts, The construction of nextgeneration matrices for compartmental epidemic models, J. R. Soc. Interface, 7 (2010), 873–885.
23. L. Farina and S. Rinaldi, Positive linear systems. Theory and applications, John Wiley AND Sons, 2000.
24. Hungarian AIDS foundation, HIV/AIDS statistics for Hungary (in Hungarian), available from: http://www.aidsinfo.hu/statisztika_magyar_t.
25. Hungarian National Focal Point, Facts and figures about the needle exchange programs, available from: http://drogfokuszpont.hu/szakteruleteink/artalomcsokkentes/artalomcsokkentestenyekesszamok/?lang=en
26. J. P. LaSalle, Stability by Liapunov's direct method, with applications, Mathematics in Science and Engineering, Academic Press, New York, 1961.
27. Z. Shuai and P. van den Driessche, Global stability of infectious disease models using Lyapunov functions, SIAM J. Appl. Math., 73 (2013), 1513–1532.
28. H. Smith, An introduction to delay differential equations with applications to the life sciences, Springer, New York, 2011.
29. H. L. Smith and H. R. Thieme, Dynamical systems and population persistence, Graduate Studies in Mathematics, Vol. 118, AMS, Providence, 2011.
30. Hungarian National Focal Point, 2018 National Report to the EMCDDA by the Reitox National Focal Point, available from: http://drogfokuszpont.hu/wpcontent/uploads/HU_EMCDDA_jelentes_HUNGARY_2018_EN.pdf
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)