
Citation: Zilong Zhuang, Zhiyao Lu, Zizhao Huang, Chengliang Liu, Wei Qin. A novel complex network based dynamic rule selection approach for open shop scheduling problem with release dates[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 4491-4505. doi: 10.3934/mbe.2019224
[1] | Naiwen Wang . Solvability of the Sylvester equation AX−XB=C under left semi-tensor product. Mathematical Modelling and Control, 2022, 2(2): 81-89. doi: 10.3934/mmc.2022010 |
[2] | Jianhua Sun, Ying Li, Mingcui Zhang, Zhihong Liu, Anli Wei . A new method based on semi-tensor product of matrices for solving reduced biquaternion matrix equation l∑p=1ApXBp=C and its application in color image restoration. Mathematical Modelling and Control, 2023, 3(3): 218-232. doi: 10.3934/mmc.2023019 |
[3] | Wenxv Ding, Ying Li, Dong Wang, AnLi Wei . Constrainted least squares solution of Sylvester equation. Mathematical Modelling and Control, 2021, 1(2): 112-120. doi: 10.3934/mmc.2021009 |
[4] | Hongli Lyu, Yanan Lyu, Yongchao Gao, Heng Qian, Shan Du . MIMO fuzzy adaptive control systems based on fuzzy semi-tensor product. Mathematical Modelling and Control, 2023, 3(4): 316-330. doi: 10.3934/mmc.2023026 |
[5] | Xueling Fan, Ying Li, Wenxv Ding, Jianli Zhao . H-representation method for solving reduced biquaternion matrix equation. Mathematical Modelling and Control, 2022, 2(2): 65-74. doi: 10.3934/mmc.2022008 |
[6] | Daizhan Cheng, Zhengping Ji, Jun-e Feng, Shihua Fu, Jianli Zhao . Perfect hypercomplex algebras: Semi-tensor product approach. Mathematical Modelling and Control, 2021, 1(4): 177-187. doi: 10.3934/mmc.2021017 |
[7] | Yuyang Zhao, Yang Liu . Output controllability and observability of mix-valued logic control networks. Mathematical Modelling and Control, 2021, 1(3): 145-156. doi: 10.3934/mmc.2021013 |
[8] | Lei Wang, Xinyun Liu, Ting Li, Jiandong Zhu . Skew-symmetric games and symmetric-based decomposition of finite games. Mathematical Modelling and Control, 2022, 2(4): 257-267. doi: 10.3934/mmc.2022024 |
[9] | Daizhan Cheng, Ying Li, Jun-e Feng, Jianli Zhao . On numerical/non-numerical algebra: Semi-tensor product method. Mathematical Modelling and Control, 2021, 1(1): 1-11. doi: 10.3934/mmc.2021001 |
[10] | Weiwei Han, Zhipeng Zhang, Chengyi Xia . Modeling and analysis of networked finite state machine subject to random communication losses. Mathematical Modelling and Control, 2023, 3(1): 50-60. doi: 10.3934/mmc.2023005 |
The concept of type-2 fuzzy sets (T2 FSs) was first proposed by Zadeh [1] and a detailed introduction was given in [2]. T2 FSs are an extension of the type-1 fuzzy set (T1 FS) and further considers the fuzziness of the fuzzy set. Since the definition of T2 FSs was proposed, most scholars have mainly studied the operations and properties of T2 FSs [3,4]. Until the 1990s, Prof. Mendel redefined T2 FSs and proposed the type-2 fuzzy logic system (T2 FLS) [5,6].
As an extension of T1 FSs, T2 FSs overcome the limitations of T1 FSs in dealing with the uncertainties of actual objects. However the definition of T2 FSs is complicated, and the corresponding graph must be a spatial graph. Due to the complexity of the expression of T2 FSs, Mendel introduces the definition of interval T2 FSs (IT2 FSs) as a special case of T2 FSs. The secondary membership grade of IT2 FSs is constant one, which is more simpler than T2 FSs. In general, IT2 fuzzy logic system (IT2 FLS) are used in most theories and applications [7,8].
In the field of fuzzy control, solving fuzzy relation equations (FREs) plays an important role in the design of fuzzy controller and fuzzy logic reasoning. Most algorithms for solving FREs can obtain some specific solutions, such as the minimum or maximum solution [9], or can describe the solution theoretically [10]. In the existing methods, most of them are used for solving type-1 fuzzy relation equations (T1 FREs), while few methods are used for solving interval type-2 fuzzy relation equations (IT2 FREs). The main work of this paper is to propose a new method to obtain the entire solution set of IT2 FREs.
On the other hand, Prof. Cheng proposed a new matrix product-semi-tensor product (STP) of matrices, which is the generalization of the conventional matrix product and retains almost all the main properties of the conventional matrix product. As a novel mathematical technique for handling logical operations, STP has been successfully applied to logical systems [11,12,13,14] and, based on this, a new algorithm for solving FREs has been devised. For example, in T1 FREs, the STP is used to solve fuzzy relation equalities and fuzzy relation inequalities [15,16,17,18]. In type-2 fuzzy relational equations (T2 FREs), only some simple algorithms have been proposed to study the solution of type-2 single-valued fuzzy relation equations and type-2 symmetry-valued fuzzy relation equations [19,20]. However, the ordinary STP cannot be used directly to solve IT2 FREs. Therefore, we extend the STP to interval matrices and propose the STP of interval matrices, then discuss the solutions of IT2 FREs.
In the rest of this paper, section two introduces the basic concepts of the STP of interval matrices. Section three mainly gives the relevant definitions of interval-valued logic and gives its matrix representation. Section four discusses the solvability of IT2 FREs and designs an algorithm to solve IT2 FREs. Section five explains the viability of the proposed algorithm with a numerical example. Section six gives a brief summary of the paper.
First, in order to express conveniently, we introduce some notations used throughout the paper.
●
I[0,1]:={[α_,¯α]|0≤α_≤¯α≤1}, |
where α_,¯α∈R. If α=[α_,α_](or α=[¯α,¯α]), this is a point interval and α degenerates into a real number.
●
I([0,1]m):={[A_,¯A]|A_≤¯A}. |
A_=(α_i)m and ¯A=(¯αi)m are two m-dimensional vectors and [a_i,¯ai]∈I[0,1], i=1⋯m.
●
I([0,1]m×n):={[A_,¯A]|A_≤¯A}. |
A_=(α_ij)m×n and ¯A=(¯αij)m×n are two m×n dimensional matrices and [α_ij,¯αij]∈I[0,1], i=1⋯m, j=1⋯n.
● δir : the ith column of unit matrix In.
● [δir,δjr] : a bounded closed interval, where δin represents its lower bound and δjn represents its upper bound, abbreviated as δr[i,j].
● Coli(M): the ith column of interval matrix M.
● Rowj(M): the jth row of interval matrix M.
Next, we define ∧,∨ and ¬ in I[0,1].
Definition 2.1. [21] (1) Let
α=[α_,¯α], β=[β_,¯β]∈I[0,1], |
then,
α∨β=[max(α_,β_),max(¯α,¯β)], | (2.1) |
α∧β=[min(α_,β_),min(¯α,¯β)]. | (2.2) |
(2) Let
A=[a_ij,¯aij]∈I([0,1]m×n), |
B=[b_jk,¯bjk]∈I([0,1]n×p), |
then their max-min composition operation is defined as
A∘B=C=[c_ik,¯cik]∈I([0,1]m×p), | (2.3) |
where
[c_ik,¯cik]=([a_i1,¯ai1]∧[b_1k,¯b1k])∨([a_i2,¯ai2]∧[b_2k,¯b2k]) ∨⋯∨([a_in,¯ain]∧[b_nk,¯bnk]), |
where i=1,⋯,m, j=1,⋯,k.
Definition 2.2. [22] Let
A=[a_ij,¯aij], |
B=[b_ij,¯bij]∈I([0,1]m×n), |
then the partial order ≥,≤ and = are defined as
(1) If a_ij≥b_ij,¯aij≥¯bij, we say A≥B.
(2) If a_ij≤b_ij,¯aij≤¯bij, we say A≤B.
(3) If a_ij=b_ij,¯aij=¯bij, we say A=B.
Property 2.1. [15] Let
A=[a_ij,¯aij], B=[b_ij,¯bij]∈I([0,1]m×n), |
C=[c_jk,¯cjk], D=[d_jk,¯djk]∈I([0,1]n×p). |
Assume A≤B and C≤D, then
A∘C≤B∘D. |
Definition 2.3. [22] (1) Let
α=[α_,¯α], β=[β_,¯β]∈I[0,1], |
then the four operations of intervals α and β are as follows.
1) Addition operation
α+β=[α_,¯α]+[β_,¯β]=[α_+β_,¯α+¯β]. | (2.4) |
2) Subtraction operation
α−β=[α_,¯α]−[β_,¯β]=[α_−¯β,¯α−β_]. | (2.5) |
3) Multiplication operation
α×β=[α_,¯α]×[β_,¯β]=[α_β_,¯α¯β]. | (2.6) |
4) Division operation
α/β=[α_,¯α]/[β_,¯β]=[min(α_/β_,α_/¯β,¯α/β_,¯α/¯β),max(α_/β_,α_/¯β,¯α/β_,¯α/¯β)]. | (2.7) |
Note that 0∉β=[β_,¯β].
(2) If
α=[α_,¯α]∈I[0,1], |
A=[a_ij,¯aij]m×n∈I([0,1]m×n), |
then the product of interval α and interval matrix A is
α×A:=([α_,¯α]×[a_ij,¯aij])m×n. | (2.8) |
(3) If
A=[a_ij,¯aij]m×n∈I([0,1]m×n), |
B=[b_jk,¯bjk]n×p∈I([0,1]n×p), |
then the product of interval matrices A and B is
A×B=C=[c_ik,¯cik]n×p=[[c_11,¯c11]⋯[c_1p,¯c1p]⋮⋱⋮[c_n1,¯cn1]⋯[c_np,¯cnp]], | (2.9) |
where
[c_ik,¯cik]=m∑j=1[a_ij,¯aij]×[b_jk,¯bjk]=[a_i1,¯ai1]×[b_1k,¯b1k]+[a_i2,¯ai2]×[b_2k,¯b2k]+⋯+[a_im,¯aim]×[b_mk,¯bmk]. |
Based on Definition 2.3, we give the relevant definition of the STP of interval matrices.
Definition 2.4. (1) If
A=[a_ij,¯aij]m×n∈I([0,1]m×n), |
B=[b_kl,¯bkl]p×q∈I([0,1]p×q), |
then the kronecker product of interval matrices A and B is
A⊗B=[a11×B⋯a1n×B⋮⋱⋮am1×B⋯amn×B]. | (2.10) |
(2) If
A=[a_ij,¯aij]m×n∈I([0,1]m×n), |
B=[b_kl,¯bkl]p×q∈I([0,1]p×q), |
then the STP of interval matrices A and B is
A⋉B=(A⊗Itn)×(B⊗Itp), | (2.11) |
where t=lcm(n,p) is the least common multiple of n and p.
(3) If
A=[a_ij,¯aij]m×n∈I([0,1]m×n), |
B=[b_kl,¯bkl]p×n∈I([0,1]p×n), |
then the khatri-rao product of interval matrices A and B is
A∗B=[Col1(A)⋉Col1(B) Col2(A)⋉Col2(B)⋯Coln(A)⋉Coln(B)]. | (2.12) |
Remark 2.1. In Definition 2.4, if n=p, then the STP of interval matrices degenerates to the ordinary interval matrix multiplication. Therefore, the STP of interval matrices is a generalization of interval matrices multiplication. In the context, the STP of interval matrices is ⋉, which is omitted by default.
Example 2.1. Given the interval matrices A and B,
A=[[0.2,0.4][0.4,0.5][0.6,1.0][0.8,0.9]], B=[[0,1][0.2,0.3][0.4,0.6][0.6,0.7][0.8,0.9][1,1][0.7,0.9][0.3,0.4]]. |
The kronecker product of the interval matrix A and the unit interval matrix I2 is
A⊗I2=[[0.2,0.4][0,0][0.4,0.5][0,0][0,0][0.2,0.4][0,0][0.4,0.5][0.6,1.0][0,0][0.8,0.9][0,0][0,0][0.6,1.0][0,0][0.8,0.9]]. |
The STP of interval matrices A and B is
A⋉BΔ=(A⊗I2)×B=[[0.16,0.70][0.28,0.47][0.32,1.54][0.60,0.93][0.44,0.81][0.32,0.60][1.04,1.71][0.84,1.36]]. |
The khatri-rao product of interval matrices A and B is
A∗B=[Col1(A)×Col1(B)Col2(A)×Col2(B)]=[[0.00,0.40][0.04,0.12][0.08,0.24][0.12,0.28][0.32,0.45][0.40,0.50][0.28,0.45][0.12,0.20][0.00,1.00][0.12,0.30][0.24,0.60][0.36,0.70][0.64,0.81][0.80,0.90][0.56,0.81][0.24,0.32]]T. |
According to the definition of STP of interval matrices, we can get the following properties.
Property 2.2. (1) Let A,B∈I([0,1]m×n),C∈I([0,1]p×q), then
(A+B)⋉C=A⋉C+B⋉C,C⋉(A+B)=C⋉A+C⋉B. | (2.13) |
(2) Let A∈I([0,1]m×n),B∈I([0,1]p×q) and C∈I([0,1]r×s), then
(A⋉B)⋉C=A⋉(B⋉C). | (2.14) |
(3) Let A∈I([0,1]m×n), C∈I([0,1]s) and R∈I([0,1]s) are column and row interval vectors, respectively, then
C⋉A=(Is⊗A)⋉C,R⋉A=(A⊗Is)⋉R. | (2.15) |
Let the interval type-2 fuzzy relation ˜R∈F(V×W), where the domain V={v1,v2,⋯,vn} and W={w1,w2,⋯,wp}, then the matrix form of interval type-2 fuzzy relation ˜R can be defined as
M˜R=[f˜R(v1,w1)μ˜R(v1,w1)⋯f˜R(v1,wp)μ˜R(v1,wp)⋮⋱⋮f˜R(vn,w1)μ˜R(vn,w1)⋯f˜R(vn,wp)μ˜R(vn,wp)]. | (2.16) |
μ˜R(vi,wk) and f˜R(vi,wk) represent the primary membership grade and secondary membership grade of IT2 FSs, respectively. For primary membership grade, it is composed of upper membership grade and lower membership grade; that is,
μ˜R(vi,wk)=[μ_˜R(vi,wk),¯μ˜R(vi,wk)]. |
The secondary membership grade of IT2 FSs equals one; that is, f˜R(vi,wk)=1, then the matrix form of interval type-2 fuzzy relation ˜R can be further described as
M˜R=[1[μ_˜R(v1,w1),¯μ˜R(v1,w1)]⋯1[μ_˜R(v1,ws),¯μ˜R(v1,wp)]⋮⋱⋮1[μ_˜R(vn,w1),¯μ˜R(vn,w1)]⋯1[μ_˜R(vn,ws),¯μ˜R(vn,wp)]]. | (2.17) |
Two common types of FREs exist in practical application [20]. One type is that the fuzzy relation is unknown, which is commonly used for designing fuzzy controllers. The other type is that the fuzzy input is unknown, which is commonly used for diagnosing diseases based on the symptom similarity. In terms of the aforementioned situations, it can be assumed that there are similar two types of IT2 FREs, as shown in Figures 1 and 2.
Type 1: assume ˜A∈F(U×V),˜B∈F(U×W). We seek an interval type-2 fuzzy relation ˜X∈F(V×W) such that it satisfies
˜A∘˜X=˜B. | (2.18) |
Type 2: assume ˜R∈F(V×W),˜B∈F(U×W). We seek an interval type-2 fuzzy input ˜X∈F(U×V) such that it satisfies
˜X∘˜R=˜B. | (2.19) |
Remark 2.2. Take a transpose of both sides of (2.19) to get ˜RT∘˜XT=˜BT. (2.19) is equivalent to (2.18), so we only need to consider the solvability of (2.18).
Definition 3.1. (1)
If={[α_,¯α]|0≤α_≤¯α≤1} |
is called the domain of interval-valued fuzzy logic, and the interval-valued fuzzy logic variable is P∈If. When α=[0,0] (orα=[1,1]), α degenerates into a classical logic variable.
(2)
Ik={[α_1,¯α1],[α_2,¯α2],⋯,[α_k,¯αk]}, [α_i,¯αi]∈If, |
i=1,⋯,k, then Ik is called the domain of k-valued interval-valued fuzzy logic.
(3) Mapping
f:Ik×Ik×⋯×Ik⏟r→Ik |
is called r-ary k-valued interval-valued logic function.
If
Ik={[α_1,¯α1],[α_2,¯α2],⋯,[α_k,¯αk]}, |
put the different upper and lower bounds of all interval-valued fuzzy logic variables in Ik into the ordered set Θ. If Θ does not contain zero and one, it needs to add zero or one:
Θ={ap|p=1,⋯,s;0≤a1<a2<⋯<as≤1}. |
In order to facilitate matrix calculation, each variable in Ik is represented as an interval vector. If α_i=am (1≤m≤s,m∈Z+) and ¯αi=an (1≤n≤s,n∈Z+), then the lower bound α_i can be represented by vector δms and the upper bound ¯αi can be represented by vector δns. Therefore,
[α_i,¯αi]∼[δms,δns]=δs[m,n]. |
Similar to the proof of theorem in paper [23], we can obtain Theorem 3.1.
Theorem 3.1. f is a r-ary k-valued interval-valued logic function, then there exists a unique structural matrix Mf, whose algebraic form is
f(x1,x2,⋯,xr)=Mf⋉ri=1[x_i,¯xi]. | (3.1) |
Remark 3.1. Structure matrix is also a special interval matrix that can be used to replace ∧,∨ and ¬ for algebraic operations.
In the following, we give the structure matrix of ∧,∨ and ¬.
Let
Ik={[α_1,¯α1],[α_2,¯α2],⋯,[α_k,¯αk]}. |
The ordered set Θ generated by Ik contains s different elements. To simply represent the structure matrix of ∧,∨ and ¬, we introduce a set of s-dimensional vectors
Uv=(1 2⋯v−1v⋯v⏟s−v+1),Vv=(v⋯v⏟v v+1 v+2⋯s), v=1,⋯,s. |
(1) The structure matrix of ∨:
Msd=[M_sd,¯Msd], M_sd=¯Msd=δs[U1U2⋯Us]. |
When s = 3, we have
M3d=δ3[[1,1][1,1][1,1][1,1][2,2] [2,2][1,1][2,2][3,3]]. |
(2) The structure matrix of ∧:
Msc=[M_sc,¯Msc], M_sc=¯Msc=δs[U1U2⋯Us]. |
When s = 3, we have
M3c=δ3[[1,1][2,2][3,3][2,2][2,2] [3,3][3,3][3,3][3,3]]. |
Definition 4.1. [20] In (2.17), the matrix constructed by the primary membership grade μ˜R(vj,wk) is called primary fuzzy matrix of interval type-2 fuzzy relation, denoted as ˜Rμ(μ˜R(vj,wk)) and abbreviated as ˜Rμ:
˜Rμ=[[μ_˜R(v1,w1),¯μ˜R(v1,w1)]⋯[μ_˜R(v1,wp),¯μ˜R(v1,wp)]⋮⋱⋮[μ_˜R(vn,w1),¯μ˜R(vn,w1)]⋯[μ_˜R(vn,wp),¯μ˜R(vn,wp)]]. |
Similarly, in (2.17), the matrix constructed by the secondary membership grade f˜R(vj,wk) is called secondary fuzzy matrix of interval type-2 fuzzy relation, denoted as ˜Rf(f˜R(vj,wk)) and abbreviated as ˜Rf:
˜Rf=[1⋯1⋮⋱⋮1⋯1]. |
Clearly, (2.18) is composed of the primary fuzzy matrix equation and secondary fuzzy matrix equation.
Definition 4.2. The IT2 FRE (2.18) can be divided into two parts: primary fuzzy matrix equation and secondary fuzzy matrix equation.
(1) The primary fuzzy matrix equation is
˜Aμ∘˜Xμ=˜Bμ, | (4.1) |
where ˜Aμ∈I([0,1]m×n), ˜Bμ∈I([0,1]m×p), ˜Xμ∈I([0,1]n×p) and ˜Xμ is unknown.
If
˜Xμ=[X_μ,¯Xμ]∈I([0,1]n×p) |
satisfies (4.1), then we call that ˜Xμ is the solution of (4.1). X_μ, ¯Xμ are lower and upper bound matrices of ˜Xμ, respectively.
If
˜Hμ=[H_μ,¯Hμ] |
is a solution of (4.1), and for any solution ˜Xμ of (4.1), there is ˜Xμ≤˜Hμ, then ˜Hμ is called the maximum solution of (4.1).
If
˜Jμ=[J_μ,¯Jμ] |
is a solution of (4.1), and for any solution ˜Xμ of (4.1), there is ˜Xμ≥˜Jμ, then ˜Jμ is called the minimal solution of (4.1).
If
˜Qμ=[Q_μ,¯Qμ] |
is a solution of (4.1), and for any solution ˜Xμ of (4.1), as long as ˜Xμ≤˜Qμ is satisfied, there is ˜Xμ=˜Qμ, then ˜Qμ is called the minimum solution of (4.1).
(2) The secondary fuzzy matrix equation is
˜Af∘˜Xf=˜Bf, | (4.2) |
where ˜Af∈Mm×n, ˜Bf∈Mm×p, ˜Xf∈Mn×p and ˜Xf is unknown.
The matrix ˜Xf satisfying (4.2) is called the solution of this equation. In (4.2), the elements of ˜Af and ˜Bf are all one, then the elements of ˜Xf are all one.
The primary fuzzy matrix Eq (4.1) is equivalent to
{A_μ∘X_μ=B_μ,¯Aμ∘¯Xμ=¯Bμ,X_μ≤¯Xμ. | (4.3) |
The conditions for the establishment of (4.3) are relatively difficult, so we first need to determine whether (4.1) has solutions.
Lemma 4.1. [24] Let
A=(aij)m×n, B=(bik)m×p. |
The T1 FRE A∘X=B has solutions if, and only if, ATαB is a solution of this equation and ATαB is the maximum solution of this equation. The α composition operation between fuzzy matrices is
ATαB=∧ni=1(aji)α(bik), |
where (aki)α(bij)={bij,aki>bij,1,aki≤bij.
Theorem 4.1. If the primary fuzzy matrix Eq (4.1) has solutions then
˜Hμ=[h_ik,¯hik]n×p={[H_μ,¯Hμ], ∀ h_ik≤¯hik,[H_μ′,¯Hμ], ∃ h_ik>¯hik. | (4.4) |
is a solution of this equation and ˜Hμ is the maximum solution of this equation.
In (4.4),
H_=A_TαB_=(h_ik)n×p, ¯H=¯AT¯αB=(¯hik)n×p, |
when
∀ h_ik≤¯hik, H_=(h_ik)n×p, ¯H=(¯hik)n×p. |
When ∃ h_ik>¯hik, we replace all elements of H_ that do not satisfy h_ik≤¯hik with ¯hik; thus, generating a new lower bound matrix H_μ′.
Proof. The primary fuzzy matrix Eq (4.1) has solutions, then T1 FREs
A_μ∘X_μ=B_μand¯Aμ∘¯Xμ=¯Bμ |
must have solutions. Lemma 4.1 implies that H_μ and ¯Hμ are solutions of T1 FREs
A_μ∘X_μ=B_μand¯Aμ∘¯Xμ=¯Bμ, |
respectively. H_μ and ¯Hμ must exist in either of the following two cases.
(1) For ∀ h_ij≤¯hij, we known that H_μ≤¯Hμ. H_μ and ¯Hμ are solutions of T1 FREs
A_μ∘X_μ=B_μand¯Aμ∘¯Xμ=¯Bμ, |
respectively. Hence,
˜Hμ=[H_μ,¯Hμ] |
satisfies (4.3) and ˜Hμ is a solution of the primary fuzzy matrix equation.
From Lemma 4.1, it follows that H_μ and ¯Hμ are maximum solutions of T1 FREs
A_μ∘X_μ=B_μand¯Aμ∘¯Xμ=¯Bμ, |
respectively. Clearly, X_μ≤H_μ and ¯Xμ≤¯Hμ, so
˜Hμ=[H_μ,¯Hμ] |
is the maximum solution of the primary fuzzy matrix equation.
(2) For ∃ h_ij>¯hij, we know that the newly generated matrix is H_μ′ and the matrix satisfies
˜Aμ∘H_μ′=˜BμandH_μ′≤¯Hμ. |
According to
˜Aμ∘H_μ′=˜Bμ, |
H_μ′ is a solution of T1 FRE
A_μ∘X_μ=B_μ. |
From Lemma 4.1, it follows that ¯Hμ is a solution of T1 FRE ¯Aμ∘¯Xμ=¯Bμ, respectively. Hence,
˜Hμ=[H_μ′,¯Hμ] |
satisfies (4.3) and ˜Hμ is a solution of the primary fuzzy matrix equation.
From Lemma 4.1, it is known that H_μ and ¯Hμ are, respectively, maximum solutions of T1 FREs
A_μ∘X_μ=B_μand¯Aμ∘¯Xμ=¯Bμ. |
According to the requirement that X_μ≤¯Xμ, we construct a new matrix H_μ′ based on H_μ. Clearly, X_μ≤H_μ′ and ¯Xμ≤¯Hμ, so
˜Hμ=[H_μ′,¯Hμ] |
is the maximum solution of the primary fuzzy matrix equation.
In summary, ˜Hμ is a solution of the primary fuzzy matrix Eq (4.1) and is the maximum solution of this equation.
If the primary fuzzy matrix Eq (4.1) has solutions, the next step is to explore how to construct parameter set solutions I∗(˜Xμ) and I∗(˜Xμ) of this equation.
First, take all the elements in ˜Aμand ˜Bμ and place the different upper and lower bounds of these elements in the the ordered set Θ:
Θ={ξi|i=1,⋯,r;0=ξ1<ξ2<⋯<ξr=1}. |
Construct an ordered interval-valued set Ψ by the ordered set Θ, defined as
Ψ={[ξ1,ξ1],[ξ1,ξ2],⋯,[ξ1,ξr];[ξ2,ξ2],[ξ2,ξ3],⋯,[ξ2,ξr];⋯;[ξr,ξr]}. |
Next, according to the order interval-valued set Ψ, we define two mappings necessary to construct the parameter set solution I∗(˜Xμ) and I∗(˜Xμ) of primary fuzzy matrix Eq (4.1).
Definition 4.3. Assuming x∈If, [ξi,ξj]∈Ψ.
(1) I∗: [x_,¯x]→Ψ is
I∗(x)=I∗([x_,¯x])=max{[ξi,ξj]∈Ψ|ξi≤x_,ξj≤¯x}. | (4.5) |
(2) I∗: [x_,¯x]→Ψ is
I∗(x)=I∗([x_,¯x])=min{[ξi,ξj]∈Ψ|ξi≥x_,ξj≥¯x}. | (4.6) |
Note that 1) When x_=ξi∈Ξ, ¯x=ξj∈Ξ,
I∗(x)=I∗(x)=[ξi,ξj]. |
2) When x_∉Ξ, ¯x=ξj∈Ξ, there exists a unique i such that ξi<x<ξi+1, then
I∗(x)=[ξi,ξj],I∗(x)=[ξi+1,ξj]. |
3) When x_=ξi∈Ξ, ¯x∉Ξ, there exists a unique j such that ξj<x<ξj+1, then
I∗(x)=[ξi,ξj],I∗(x)=[ξi,ξj+1]. |
4) When x_∉Ξ, ¯x∉Ξ, there exists a unique i and j such that ξi<x<ξi+1, ξj<x<ξj+1, then
I∗(x)=[ξi,ξj],I∗(x)=[ξi+1,ξj+1]. |
By Definition 4.3, it is not difficult to derive the following properties.
Property 4.1. Let
˜Aμ=[a_ij,¯aij]∈I([0,1]m×n), |
˜Bμ=[b_ik,¯bik]∈I([0,1]m×p), |
then,
(1) I∗(aij)=I∗(aij)=aij;I∗(bik)=I∗(bik)=bik.
(2) I∗(˜Aμ)=I∗(˜Aμ=˜Aμ;I∗(˜Bμ)=I∗(˜Bμ)=˜Bμ.
(3) I∗(˜Aμ∘˜Xμ)=I∗(˜Bμ)=˜Bμ;I∗(˜Aμ∘˜Xμ)=I∗(˜Bμ)=˜Bμ.
(4) ˜Xμ≤I∗(˜Xμ),I∗(˜Xμ)≤˜Xμ.
Property 4.2. Let x,y∈If, xi,yi∈If, i=1,⋯,n, then
(1) I∗(x)∨I∗(y)=I∗(x∨y); I∗(x)∨I∗(y)=I∗(x∨y).
(2) I∗(x)∧I∗(y)=I∗(x∧y); I∗(x)∧I∗(y)=I∗(x∧y).
(3) n∨i=1[I∗(xi)∧I∗(yi)]=I∗[n∨i=1(xi∧yi)].
(4) n∨i=1[I∗(xi)∧I∗(yi)]=I∗[n∨i=1(xi∧yi)].
Property 4.3. Let
˜Aμ=[a_ij,¯aij]∈I([0,1]m×n), |
˜Xμ=[x_jk,¯xjk]∈I([0,1]n×p), |
then,
(1) I∗(˜Aμ∘˜Xμ)=I∗(˜Aμ)∘I∗(˜Xμ).
(2) I∗(˜Aμ∘˜Xμ)=I∗(˜Aμ)∘I∗(˜Xμ).
Theorem 4.2. ˜Xμ is a solution of the primary fuzzy matrix Eq (4.1) if, and only if, I∗(˜Xμ) is a solution of the primary fuzzy matrix equation.
Proof. (Necessity) Assuming that {\widetilde X_\mu } is a solution of the primary fuzzy matrix equation, it is clear that {\widetilde A_\mu } \circ {\widetilde X_\mu }{\rm{ = }}{\widetilde B_\mu } . By Property 4.1, it follows that
\begin{eqnarray} {I^*}\left( {{{\widetilde A}_\mu } \circ {{\widetilde X}_\mu }} \right) = {I^*}\left( {{{\widetilde B}_\mu }} \right){\rm{ = }}{\widetilde B_\mu }. \end{eqnarray} | (4.7) |
According to the Property 4.3, we know that
{I^*}\left( {{{\widetilde A}_\mu } \circ {{\widetilde X}_\mu }} \right) = {I^*}\left( {{{\widetilde A}_\mu }} \right) \circ {I^*}\left( {{{\widetilde X}_\mu }} \right). |
From (4.7) we have
\begin{eqnarray} {I^*}\left( {{{\widetilde A}_\mu }} \right) \circ {I^*}\left( {{{\widetilde X}_\mu }} \right){\rm{ = }}{\widetilde B_\mu }. \end{eqnarray} | (4.8) |
By the Property 4.1, it is not difficult to obtain {I^*}\left({{{\widetilde A}_\mu }} \right){\rm{ = }}{\widetilde A_\mu } . From (4.8) we have
\begin{eqnarray} {\widetilde A_\mu } \circ {I^*}\left( {{{\widetilde X}_\mu }} \right){\rm{ = }}{\widetilde B_\mu }. \end{eqnarray} | (4.9) |
Formula (4.9) shows that {I^*}\left({{{\widetilde X}_\mu }} \right) is a solution of the primary fuzzy matrix equation.
(Sufficiency) Assuming that {I^*}\left({{{\widetilde X}_\mu }} \right) is a solution of the primary fuzzy matrix equation, it is clear that {\widetilde A_\mu } \circ {I^*}\left({{{\widetilde X}_\mu }} \right){\rm{ = }}{\widetilde B_\mu } . By Property 4.1, it follows that
\begin{eqnarray} \widetilde X_\mu \le {I^*}(\widetilde X_\mu ). \end{eqnarray} | (4.10) |
Using Property 2.1, we can get
\begin{eqnarray} \widetilde B_\mu \le \widetilde A_\mu \circ \widetilde X_\mu \le \widetilde A_\mu \circ {I^*}(\widetilde X_\mu ). \end{eqnarray} | (4.11) |
Formula (4.11) shows that \widetilde X_\mu is a solution of the primary fuzzy matrix equation.
Therefore, the conclusion is correct.
Similarly, {\widetilde X_\mu } is a solution of the primary fuzzy matrix Eq (4.1) if, and only if, {I_*}\left({{{\widetilde X}_\mu }} \right) is a solution of the primary fuzzy matrix equation.
By Theorem 4.2, we can obtain the following corollary.
Corollary 4.1. (1) The interval matrix {\widetilde H_\mu } is the maximum solution of primary fuzzy matrix Eq (4.1) if, and only if, {I^*}\left({{{\widetilde H}_\mu }} \right) is the maximum solution of this equation.
(2) The interval matrix {\widetilde J_\mu } is the minimum solution of primary fuzzy matrix Eq (4.1) if, and only if, {I_*}\left({{{\widetilde J}_\mu }} \right) is the minimum solution of this equation.
(3) The interval matrix {\widetilde Q_\mu } is the minimal solution of primary fuzzy matrix Eq (4.1) if, and only if, {I_* }\left({{{\widetilde Q}_\mu }} \right) is the minimal solution of this equation.
If the primary fuzzy matrix Eq (4.1) has solutions, we next explore how to obtain parameter set solutions of this equation. By Theorem 4.2, the ordered interval-valued set \Psi is sufficient to inscribe the entire parameter set solutions of the primary fuzzy matrix equation.
First, the primary fuzzy matrix equation can be rewritten to
\begin{eqnarray} {\widetilde A_\mu } \circ Co{l_k}({\widetilde X_\mu }) = Co{l_k}({\widetilde B_\mu }), \end{eqnarray} | (4.12) |
where k = 1, \cdots, p.
In (4.12), the kth equality is equivalent to
\begin{eqnarray} \begin{aligned} &\left( {\left[ {{{\underline a }_{i1}}, {{\overline a }_{i1}}} \right] \wedge \left[ {{{\underline x }_{1k}}, {{\overline x }_{1k}}} \right]} \right) \vee \left( {\left[ {{{\underline a }_{i2}}, {{\overline a }_{i2}}} \right] \wedge \left[ {{{\underline x }_{2k}}, {{\overline x }_{2k}}} \right]} \right)\\ &\vee \cdots \vee \left( {\left[ {{{\underline a }_{in}}, {{\overline a }_{in}}} \right] \wedge \left[ {{{\underline x }_{nk}}, {{\overline x }_{nk}}} \right]} \right) = \left[ {{{\underline b }_{ik}}, {{\overline b }_{ik}}} \right], \\ \end{aligned} \end{eqnarray} | (4.13) |
where i = 1, \cdots, m.
Second, the logical form of the primary fuzzy matrix equation is converted to algebraic form.
For simplicity of presentation, let
{a_{ij}} = \left[ {{{\underline a }_{ij}}, {{\overline a }_{ij}}} \right], {x_{jk}} = \left[ {{{\underline x }_{jk}}, {{\overline x }_{jk}}} \right], \ \ \ j = 1, \cdots , n. |
With the help of Theorem 3.1, the left hand side (LHS) of (4.13) can be expressed in algebraic form:
\begin{eqnarray} \begin{aligned} LHS = &{\left( {M_d^s} \right)^{n - 1}}\left[ {\left( {M_c^s{a_{i1}}{x_{1k}}} \right)\left( {M_c^s{a_{i2}}{x_{2k}}} \right)} \right.\\ &\ {\cdots \left( {M_c^s{a_{in}}{x_{nk}}} \right)} ], \end{aligned} \end{eqnarray} | (4.14) |
where i = 1, \cdots, m.
By Property 2.2, we know that
\begin{eqnarray} {x_{1k}}\left( {M_c^s{a_{i2}}{x_{2k}}} \right) = \left( {{I_s} \otimes M_c^s{a_{i2}}} \right){x_{1k}}{x_{2k}}. \end{eqnarray} | (4.15) |
According to (4.15), (4.14) is simplified to
\begin{eqnarray} \begin{aligned} LHS{\rm{ = }}&{\left( {M_d^s} \right)^{n - 1}}\left[ {\left( {M_c^s{a_{i1}}} \right)\left( {{I_s} \otimes M_c^s{a_{i2}}} \right){x_{1k}}{x_{2k}}} \right.\\ &\left( {M_c^s{a_{i3}}{x_{3k}}} \right)\left. { \cdots \left( {M_c^s{a_{in}}{x_{nk}}} \right)} \right]. \end{aligned} \end{eqnarray} | (4.16) |
From Property 2.2, it follows that
\begin{eqnarray} {x_{1k}}{x_{2k}}\left( {M_c^s{a_{i3}}{x_{3k}}} \right) = \left( {{I_{{s^2}}} \otimes M_c^s{a_{i3}}} \right){x_{1k}}{x_{2k}}{x_{3k}}. \end{eqnarray} | (4.17) |
According to (4.17), (4.16) is further simplified to
\begin{eqnarray} \begin{aligned} LHS{\rm{ = }}&{\left( {M_d^s} \right)^{n - 1}}\left[ {\left( {M_c^s{a_{i1}}} \right)\left( {{I_s} \otimes M_c^s{a_{i2}}} \right)} \right.\\ &\left. {\left( {{I_{{s^2}}} \otimes M_c^s{a_{i2}}} \right){x_{1k}}{x_{2k}}{x_{3k}} \cdots \left( {M_c^s{a_{in}}{x_{nk}}} \right)} \right]. \end{aligned} \end{eqnarray} | (4.18) |
Repeating the process of (4.15)–(4.18), (4.14) is finally expressed as
\begin{eqnarray} \begin{aligned} LHS = &{\left( {M_d^s} \right)^{n - 1}}\left[ {\left( {M_c^s{a_{i1}}} \right)\left( {{I_s} \otimes M_c^s{a_{i2}}} \right)\left( {{I_{{s^2}}} \otimes M_c^s{a_{i2}}} \right)} \right.\\ &\left. { \cdots \left( {{I_{{s^{n - 1}}}} \otimes M_c^s{a_{in}}} \right) \ltimes _{j = 1}^n{x_{jk}}} \right]\\ = & {\left( {M_d^s} \right)^{n - 1}}\left[ {\left( {M_c^s\left[ {{{\underline a }_{i1}}, {{\overline a }_{i1}}} \right]} \right)\left( {{I_s} \otimes M_c^s\left[ {{{\underline a }_{i2}}, {{\overline a }_{i2}}} \right]} \right)} \right.\\ &\left. { \cdots \left( {{I_{{s^{n - 1}}}} \otimes M_c^s\left[ {{{\underline a }_{in}}, {{\overline a }_{in}}} \right]} \right)} \right] \ltimes _{j = 1}^n\left[ {{{\underline x }_{jk}}, {{\overline x }_{jk}}} \right]\\ : = & {L_i}[{\underline x_k}, {\overline x_k}], \end{aligned} \end{eqnarray} | (4.19) |
where i = 1, \cdots, m, and
\begin{aligned} {L_i} = & {\left( {M_d^s} \right)^{n - 1}}M_c^s\left[ {{\underline a_{i1}}, {\overline a_{i1}}} \right]\left( {{I_s} \otimes M_c^s\left[ {{\underline a_{i2}}, {\overline a_{i2}}} \right]} \right)\\ &\cdots \left( {{I_{{s^{n - 1}}}} \otimes M_c^s\left[ {{a_{in}}, {a_{in}}} \right]} \right) \ltimes _{j = 1}^n\left[ {{\underline x_{jk}}, {\overline x_{jk}}} \right], \\ [{\underline x_k}, {\overline x_k}] = & \ltimes _{j = 1}^n\left[ {{\underline x_{jk}}, {\overline x_{jk}}} \right], \end{aligned} |
then (4.19) can be simplified to
\begin{eqnarray} {L_i}[{\underline x_k}, {\overline x_k}] = [{\underline b_{ik}}, {\overline b_{ik}}], \end{eqnarray} | (4.20) |
where i = 1, \cdots, m.
Equation (4.20) is equivalent to
\begin{eqnarray} L[{\underline x_k}, {\overline x_k}] = [{\underline b_k}, {\overline b_k}], \end{eqnarray} | (4.21) |
where
\begin{aligned} L& = {L_1} * {L_2} * \cdots * {L_m}, \\ [{\underline b_k}, {\overline b_k}] & = \ltimes _{i = 1}^m[{\underline b_{ik}}, {\overline b_{ik}}], \end{aligned} |
where "*" denotes the khatri-rao product of interval matrices.
According to the above procedure, the value of the kth row of {\widetilde X_\mu } can be determined. Let k = 1, 2, \cdots, p , and we can obtain the parameter set solutions of the primary fuzzy matrix equation.
A specific algorithm for solving all solutions of IT2 FRE (2.18) is given in the following.
Algorithm 4.1. The following steps are used to solve the solution set of IT2 FRE (2.18).
Step. 1. Decompose IT2 FRE (2.18) to construct the primary fuzzy matrix Eq (4.1).
Step. 2. Use Theorem 4.1 to determine if there are solutions to the primary fuzzy matrix equation. If the primary fuzzy matrix equation has solutions, then proceed as follows; otherwise, IT2 FRE (equ:IT2 FRE(a)) has no solution.
Step. 3. Construct an ordered set \Theta from {\widetilde A_\mu} and {\widetilde B_\mu}
\Theta {\rm{ = }}\left\{ {{\xi _i}|i = 1, \cdots , r;0{\rm{ = }}{\xi _1} < {\xi _2} < \cdots < {\xi _r}{\rm{ = }}1} \right\}. |
We specify
{\xi _i} \sim \delta _r^i, {\xi _j} \sim \delta _r^j, \quad \left[ {{\xi _i}, {\xi _j}} \right] = {\delta _r}\left[ {i, j} \right]. |
The elements in {\widetilde A_\mu} and {\widetilde B_\mu} can be represented as vectors to facilitate algebraic operations.
Step. 4. Construct (4.12) and convert it into the form of (4.21) to solve for the parameter set solutions of Co{l_k}\left({{{\widetilde X}_\mu }} \right).
Step. 5. Let k = 1, 2, \cdots, p , and we can get all parameter set solutions of \left({{{\widetilde X}_\mu }} \right) . Determine the maximum and minimum (or minimal) solutions of the primary fuzzy matrix equation.
Step. 6. Finally, based on the solution set of the primary fuzzy matrix equation and secondary fuzzy matrix equation, the solution set \widetilde X of IT2 FRE is constructed.
Consider the following IT2 FRE,
\begin{eqnarray} \widetilde X \circ \widetilde R = \widetilde B, \end{eqnarray} | (5.1) |
where
\begin{array}{l} \widetilde X = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\left[ {{{\underline x }_{11}}, {{\overline x }_{11}}} \right]}}}&{\frac{1}{{\left[ {{{\underline x }_{12}}, {{\overline x }_{12}}} \right]}}}\\ {\frac{1}{{\left[ {{{\underline x }_{21}}, {{\overline x }_{21}}} \right]}}}&{\frac{1}{{\left[ {{{\underline x }_{22}}, {{\overline x }_{22}}} \right]}}} \end{array}} \right], \ \ \widetilde R = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{[0.3, 0.7]}}}&{\frac{1}{{[0.2, 0.3]}}}\\ {\frac{1}{{[0.1, 0.5]}}}&{\frac{1}{{[0.5, 0.7]}}} \end{array}} \right], \\ \widetilde B = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{[0.1, 0.5]}}}&{\frac{1}{{[0.1, 0.3]}}}\\ {\frac{1}{{[0.2, 0.5]}}}&{\frac{1}{{[0.5, 0.7]}}} \end{array}} \right]. \end{array} |
First, taking a transpose on both sides of (5.1), we get
\begin{eqnarray} {\widetilde R^T} \circ {\widetilde X^T} = {\widetilde B^T}. \end{eqnarray} | (5.2) |
By decomposing IT2 FRE (5.2), we can obtain the primary fuzzy matrix equation and the secondary fuzzy matrix equation. From Definition 4.1, we only need to solve the primary fuzzy matrix equation to obtain the solution set of IT2 FRE. The primary fuzzy matrix equation of (5.2) can be expressed as
\begin{eqnarray} {\widetilde R_\mu }^T \circ {\widetilde X_\mu }^T = {\widetilde B_\mu }^T, \end{eqnarray} | (5.3) |
where
\begin{array}{l} \widetilde R_\mu ^T = \left[ {\begin{array}{*{20}{l}} {[0.3, 0.7]}&{[0.1, 0.5}\\ {[0.2, 0.3]}&{[0.5, 0.7]} \end{array}} \right], \ \ \widetilde X_\mu ^T = \left[ {\begin{array}{*{20}{c}} {\left[ {{{\underline x }_{11}}, {{\overline x }_{11}}} \right]}&{\left[ {{{\underline x }_{21}}, {{\overline x }_{21}}} \right]}\\ {\left[ {{{\underline x }_{12}}, {{\overline x }_{12}}} \right]}&{\left[ {{{\underline x }_{22}}, {{\overline x }_{22}}} \right]} \end{array}} \right], \\ \widetilde B_\mu ^T = \left[ {\begin{array}{*{20}{l}} {[0.1, 0.5]}&{[0.2, 0.5]}\\ {[0.1, 0.3]}&{[0.5, 0.7]} \end{array}} \right]. \end{array} |
Next, use Theorem 4.1 to determine if (5.3) has solutions.
\begin{aligned} {\underline H _\mu }& = {\left( {{{\underline A }_\mu }^T} \right)^T}\alpha \left( {{{\underline B }_\mu }^T} \right)\\ & = {\left[ {\begin{array}{*{20}{c}} {0.3}&{0.1}\\ {0.2}&{0.5} \end{array}} \right]^T}\alpha \left[ {\begin{array}{*{20}{c}} {0.1}&{0.2}\\ {0.1}&{0.5} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {0.1}&{0.2}\\ {0.1}&{1} \end{array}} \right], \\ {\overline H _\mu }& = {\left( {{{\overline A }_\mu }^T} \right)^T}\alpha \left( {{{\overline B }_\mu }^T} \right)\\ & = {\left[ {\begin{array}{*{20}{c}} {0.7}&{0.5}\\ {0.3}&{0.7} \end{array}} \right]^T}\alpha \left[ {\begin{array}{*{20}{c}} {0.5}&{0.5}\\ {0.3}&{0.7} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {0.5}&{0.5}\\ {0.3}&1 \end{array}} \right], \\ {\widetilde H_\mu } & = \left[ {\begin{array}{*{20}{c}} {\left[ {0.1, 0.5} \right]}&{\left[ {0.2, 0.5} \right]}\\ {\left[ {0.1, 0.3} \right]}&{\left[ {1, 1} \right]} \end{array}} \right], \\ {\widetilde R_\mu }^T \circ {\widetilde H_\mu }& = \left[ {\begin{array}{*{20}{c}} {\left[ {0.1, 0.5} \right]}&{\left[ {0.2, 0.5} \right]}\\ {\left[ {0.1, 0.3} \right]}&{\left[ {0.5, 0.7} \right]} \end{array}} \right] = {\widetilde B_\mu }^T. \end{aligned} |
According to the above calculation, {\underline H _\mu } \le {\overline H _\mu } , {\widetilde H_\mu } is a solution of (5.3) and {\widetilde H_\mu } is the maximum solution of this equation.
Let
Co{l_1}\left( {{{\widetilde X}_\mu^T }} \right) = {\left[ [\underline x _{11}, \overline x _{11}]\ [\underline x _{21}, \overline x _{21}]\right]^T}, |
which needs to satisfy the following logical equation.
\begin{eqnarray} \left\{ \begin{array}{l} \left( {\left[ {0.3, 0.7} \right] \wedge \left[ {{{\underline x }_{11}}, {{\overline x }_{11}}} \right]} \right) \vee \left( {\left[ {0.1, 0.5} \right] \wedge \left[ {{{\underline x }_{21}}, {{\overline x }_{21}}} \right]} \right) = \left[ {0.1, 0.5} \right], \\ \left( {\left[ {0.2, 0.3} \right] \wedge \left[ {{{\underline x }_{11}}, {{\overline x }_{11}}} \right]} \right) \vee \left( {\left[ {0.5, 0.7} \right] \wedge \left[ {{{\underline x }_{21}}, {{\overline x }_{21}}} \right]} \right) = \left[ {0.1, 0.3} \right]. \end{array} \right. \end{eqnarray} | (5.4) |
However, solving (5.4) directly is relatively difficult, so it needs to be converted into algebraic form.
Construct the ordered set \Theta based on {\widetilde A_\mu } and {\widetilde B_\mu } :
\Theta {\rm{ = }}\left\{ {0, 0.1, 0.2, 0.3, 0.5, 1} \right\}. |
Represent the elements in \Theta as vectors
\begin{array}{l} 1 \sim \delta _7^1;\ \ 0.7 \sim \delta _7^2;\ \ 0.5 \sim \delta _7^3;\ \ 0.3 \sim \delta _7^4;\\ 0.2 \sim \delta _7^5;\ \ 0.1 \sim \delta _7^6;\ \ 0 \sim \delta _7^7. \end{array} |
Convert (5.4) into an algebraic equation
\left\{ \begin{array}{l} M_d^7\left( {M_c^7{\delta _7}\left[ {4, 2} \right]\left[ {{{\underline x }_{11}}, {{\overline x }_{11}}} \right]} \right)\left( {M_c^7{\delta _7}\left[ {6, 3} \right]\left[ {{{\underline x }_{21}}, {{\overline x }_{21}}} \right]} \right) = {\delta _7}\left[ {6, 3} \right], \\ M_d^7\left( {M_c^7{\delta _7}\left[ {5, 4} \right]\left[ {{{\underline x }_{11}}, {{\overline x }_{11}}} \right]} \right)\left( {M_c^7{\delta _7}\left[ {3, 2} \right]\left[ {{{\underline x }_{21}}, {{\overline x }_{21}}} \right]} \right) = {\delta _7}\left[ {6, 4} \right]. \end{array} \right. |
Let
\left[ {\underline x_1 , \overline x_1 } \right] = \left[ {{{\underline x }_{11}}, {{\overline x }_{11}}} \right] \ltimes \left[ {{{\underline x }_{21}}, {{\overline x }_{21}}} \right], |
which is equivalent to
\left\{ \begin{array}{l} M_d^7M_c^7{\delta _7}\left[ {4, 2} \right]\left( {{I_7} \otimes M_c^7{\delta _7}\left[ {6, 3} \right]} \right)\left[ {\underline x_1 , \overline x_1 } \right] = {\delta _7}\left[ {6, 3} \right], \\ M_d^7M_c^7{\delta _7}\left[ {5, 4} \right]\left( {{I_7} \otimes M_c^7{\delta _7}\left[ {3, 2} \right]} \right)\left[ {\underline x_1 , \overline x_1 } \right] = {\delta _7}\left[ {6, 4} \right].\end{array} \right. |
Let
{L_1} = M_d^7M_c^7\left[ {\delta _7^4, \delta _7^2} \right]\left( {{I_7} \otimes M_c^7\left[ {\delta _7^6, \delta _7^3} \right]} \right), |
{L_2} = M_d^7M_c^7\left[ {\delta _7^5, \delta _7^4} \right]\left( {{I_7} \otimes M_c^7\left[ {\delta _7^3, \delta _7^2} \right]} \right). |
This leads to
\begin{eqnarray} L \ltimes [\underline x_1 , \overline x_1] = [\underline b_1 , \overline b_1]. \end{eqnarray} | (5.5) |
The MATLAB program provided in the literature [15] is improved so that it can calculate the STP of the interval matrix. (5.5) is calculated as
\begin{aligned} \begin{aligned} L = & {L_1}*{L_2}\\ = &{\delta _{49}}\left[ {[24, 9][24, 9][24, 10][25, 11][26, 11][26, 11][26, 11]} \right.\\ &{\rm{ }}[24, 9][24, 9][24, 10][25, 11][26, 11][26, 11][26, 11]\\ &{\rm{ }}[24, 16][24, 16][24, 17][25, 18][26, 18][26, 18][26, 18]\\ &{\rm{ }}[24, 16][24, 16][24, 17][25, 25][26, 25][26, 25][26, 25]\\ &{\rm{ }}[31, 16][31, 16][31, 17][32, 25][33, 33][33, 33][33, 33]\\ &{\rm{ }}[38, 16][38, 16][38, 17][39, 25][40, 33][41, 41][41, 41]\\ &{\rm{ }}{[38, 16][38, 16][38, 17][39, 25][40, 33][41, 41][49, 49] ]}, \\ [\underline b_1 , \overline b_1] = & \left[ {\delta _7^6, \delta _7^3} \right] \ltimes \left[ {\delta _7^6, \delta _7^4} \right] = \left[ {\delta _{49}^{41}, \delta _{49}^{18}} \right]. \end{aligned} \end{aligned} |
Solving for (5.5), we get
[\underline x_1 , \overline x_1] = [\delta _{49}^i, \delta _{49}^j], |
where i = 41, 42, 48, \ j = 18, 19, 20, 21.
From the values of [\underline x_1, \overline x_1] , there are 3 \times 4 = 12 parameter set solutions for Co{l_1}\left({\widetilde X}_\mu^T \right) , two of which do not satisfy {\underline {\rm{x}} _{i1}} \le {\overline x _{i1}}\left({i = 1, 2} \right) ; then
\begin{aligned} &\left( {{{\widetilde X}_\mu^T }} \right)_1^1 = {\delta _7}{\left[ {\left[ {6, 3} \right]\left[ {6, 4} \right]} \right]^T} \sim {\left[ {[0.1, 0.5][0.1, 0.3]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_1^2 = {\delta _7}{\left[ {\left[ {6, 3} \right]\left[ {6, 5} \right]} \right]^T} \sim {\left[ {[0.1, 0.5][0.1, 0.2]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_1^3 = {\delta _7}{\left[ {\left[ {6, 3} \right]\left[ {6, 6} \right]} \right]^T} \sim {\left[ {[0.1, 0.5][0.1, 0.1]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_1^4 = {\delta _7}{\left[ {\left[ {6, 3} \right]\left[ {7, 4} \right]} \right]^T} \sim {\left[ {[0.1, 0.5][0, 0.3]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_1^5 = {\delta _7}{\left[ {\left[ {6, 3} \right]\left[ {7, 5} \right]} \right]^T} \sim {\left[ {[0.1, 0.5][0, 0.2]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_1^6 = {\delta _7}{\left[ {\left[ {6, 3} \right]\left[ {7, 6} \right]} \right]^T} \sim {\left[ {[0.1, 0.5][0, 0.1]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_1^7 = {\delta _7}{\left[ {\left[ {6, 3} \right]\left[ {7, 7} \right]} \right]^T} \sim {\left[ {[0.1, 0.5][0, 0.0]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_1^8 = {\delta _7}{\left[ {\left[ {7, 3} \right]\left[ {6, 4} \right]} \right]^T} \sim {\left[ {[0, 0.5][0.1, 0.3]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_1^9 = {\delta _7}{\left[ {\left[ {7, 3} \right]\left[ {6, 5} \right]} \right]^T} \sim {\left[ {[0, 0.5][0.1, 0.2]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_1^{10} = {\delta _7}{\left[ {\left[ {7, 3} \right]\left[ {6, 6} \right]} \right]^T} \sim {\left[ {[0, 0.5][0.1, 0.1]} \right]^T}. \end{aligned} |
Assuming
Co{l_2}\left( {{{\widetilde X}_\mu^T }} \right) = {\left[ [\underline x_{12} , \overline x_{12}] \ [\underline x_{22} , \overline x_{22}]\right]^T}, |
we have
\begin{eqnarray} L \ltimes [\underline x_2 , \overline x_2] = [\underline b_2 , \overline b_2], \end{eqnarray} | (5.6) |
where the value of L has been obtained in (5.5),
\begin{eqnarray*} [\underline b_2 , \overline b_2] & = {\delta _7}\left[ {5, 3} \right] \ltimes {\delta _7}\left[ {3, 2} \right] = {\delta _{49}}\left[ {31, 16} \right]. \end{eqnarray*} |
Solving for (5.6), we get
[\underline x_2 , \overline x_2] = [\delta _{49}^i, \delta _{49}^j], |
where i = 29, 30, 31 , j = 15, 16, 22, 23, 29, 30, 36.
Depending on the value of [\underline x_2, \overline x_2] , it follows that Co{l_2}\left({{{\widetilde X}_\mu^T }}\right) has 3 \times 7 = 21 parameter set solutions, six of which do not satisfy {\underline {\rm{x}} _{i2}} \le {\overline x _{i2}}\left({i = 1, 2} \right) ; then
\begin{aligned} &\left( {{{\widetilde X}_\mu^T }} \right)_2^1 = {\delta _7}{\left[ {\left[ {5, 3} \right]\left[ {1, 1} \right]} \right]^T} \sim {\left[ {[0.2, 0.5][1, 1]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_2^2 = {\delta _7}{\left[ {\left[ {5, 4} \right]\left[ {1, 1} \right]} \right]^T} \sim {\left[ {[0.2, 0.3][1, 1]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_2^3 = {\delta _7}{\left[ {\left[ {5, 5} \right]\left[ {1, 1} \right]} \right]^T} \sim {\left[ {[0.2, 0.2][1, 1]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_2^4 = {\delta _7}{\left[ {\left[ {5, 3} \right]\left[ {2, 1} \right]} \right]^T} \sim {\left[ {[0.2, 0.5][0.7, 1]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_2^5 = {\delta _7}{\left[ {\left[ {5, 3} \right]\left[ {2, 2} \right]} \right]^T} \sim {\left[ {[0.2, 0.5][0.7, 0.7]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_2^6 = {\delta _7}{\left[ {\left[ {5, 4} \right]\left[ {2, 1} \right]} \right]^T} \sim {\left[ {[0.2, 0.3][0.7, 1]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_2^7 = {\delta _7}{\left[ {\left[ {5, 4} \right]\left[ {2, 2} \right]} \right]^T} \sim {\left[ {[0.2, 0.3][0.7, 0.7]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_2^8 = {\delta _7}{\left[ {\left[ {5, 5} \right]\left[ {2, 1} \right]} \right]^T} \sim {\left[ {[0.2, 0.2][0.7, 1]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_2^9 = {\delta _7}{\left[ {\left[ {5, 5} \right]\left[ {2, 2} \right]} \right]^T} \sim {\left[ {[0.2, 0.2][0.7, 0.7]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_2^{10} = {\delta _7}{\left[ {\left[ {5, 3} \right]\left[ {3, 1} \right]} \right]^T} \sim {\left[ {[0.2, 0.5][0.5, 1]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_2^{11} = {\delta _7}{\left[ {\left[ {5, 3} \right]\left[ {3, 2} \right]} \right]^T} \sim {\left[ {[0.2, 0.5][0.5, 0.7]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_2^{12} = {\delta _7}{\left[ {\left[ {5, 4} \right]\left[ {3, 1} \right]} \right]^T} \sim {\left[ {[0.2, 0.3][0.5, 1]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_2^{13} = {\delta _7}{\left[ {\left[ {5, 4} \right]\left[ {3, 2} \right]} \right]^T} \sim {\left[ {[0.2, 0.3][0.5, 0.7]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_2^{14} = {\delta _7}{\left[ {\left[ {5, 5} \right]\left[ {3, 1} \right]} \right]^T} \sim {\left[ {[0.2, 0.2][0.5, 1]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_2^{15} = {\delta _7}{\left[ {\left[ {5, 5} \right]\left[ {3, 2} \right]} \right]^T} \sim {\left[ {[0.2, 0.2][0.5, 0.7]} \right]^T}. \end{aligned} |
In summary, we can conclude that:
(1) The primary fuzzy matrix Eq (5.3) has a total of 10 \times 15 = 150 parameter set solutions.
(2) The maximum solution of this equation is
{\widetilde H_\mu } = \left[ {\left( {{{\widetilde X}_\mu^T }} \right)_1^1, \left( {{{\widetilde X}_\mu^T }} \right)_2^1} \right] = \left[ {\begin{array}{*{20}{c}} {\left[ {0.1, 0.5} \right]}&{\left[ {0.2, 0.5} \right]}\\ {\left[ {0.1, 0.3} \right]}&{\left[ {1, 1} \right]} \end{array}} \right]. |
(3) The equation has no minimum solution and only two minimal solutions,
\begin{aligned} {\left( {{{\widetilde Q}_\mu }} \right)_1}& = \left[ {\left( {{X_\mu^T }} \right)_1^7, \left( {{X_\mu^T }} \right)_2^{15}} \right] = \left[ {\begin{array}{*{20}{c}} {\left[ {0.1, 0.5} \right]}&{\left[ {0.2, 0.2} \right]}\\ {\left[ {0, 0} \right]}&{\left[ {0.5, 0.7} \right]} \end{array}} \right], \\ {\left( {{{\widetilde Q}_\mu }} \right)_2} & = \left[ {\left( {{X_\mu^T }} \right)_1^{10}, \left( {{X_\mu^T }} \right)_2^{15}} \right] = \left[ {\begin{array}{*{20}{c}} {\left[ {0, 0.5} \right]}&{\left[ {0.2, 0.2} \right]}\\ {\left[ {0.1, 0.1} \right]}&{\left[ {0.5, 0.7} \right]} \end{array}} \right]. \end{aligned} |
(4) Based on the maximum and minimal solutions of the primary fuzzy matrix equation, we can work out all the parameter set solutions of the primary fuzzy matrix equation.
\begin{aligned} {\left( {{{\widetilde X}_\mu^T }} \right)_1} & = \left[ {\begin{array}{*{20}{c}} {[0.1, 0.5]}&{\left[ {0.2, 0.2 \le {{\overline x }_{12}} \le 0.5} \right]}\\ {\left[ {0 \le {{\underline x }_{21}} \le 0.1, 0 \le {{\overline x }_{21}} \le 0.3} \right]}&{\left[ {0.5 \le {{\underline x }_{22}} \le 1, 0.7 \le {{\overline x }_{22}} \le 1} \right]} \end{array}} \right], \\ {\left( {{{\widetilde X}_\mu^T }} \right)_2} & = \left[ {\begin{array}{*{20}{c}} {[0 \le {{\underline x }_{11}} \le 0.1, 0.5]}&{\left[ {0.2, 0.2 \le {{\overline x }_{12}} \le 0.5} \right]}\\ {\left[ {0.1, 0.1 \le {{\overline x }_{21}} \le 0.3} \right]}&{\left[ {0.5 \le {{\underline x }_{22}} \le 1, 0.7 \le {{\overline x }_{22}} \le 1} \right]} \end{array}} \right]. \end{aligned} |
(5) The solution set of IT2 FRE is
\begin{array}{l} {(\widetilde X_\mu ^T)_1} = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{[0.1, 0.5]}}}&{\frac{1}{{\left[ {0 \le {{\underline x }_{21}} \le 0.1, 0 \le {{\overline x }_{21}} \le 0.3} \right]}}}\\ {\frac{1}{{\left[ {0.2, 0.2 \le {{\overline x }_{12}} \le 0.5} \right]}}}&{\frac{1}{{\left[ {0.5 \le {{\underline x }_{22}} \le 1, 0.7 \le {{\overline x }_{22}} \le 1} \right]}}} \end{array}} \right], \\ {(\widetilde X_\mu ^T)_2} = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\left[ {0 \le {{\underline x }_{11}} \le 0.1, 0.5} \right]}}}&{\frac{1}{{\left[ {0.1, 0.1 \le {{\overline x }_{21}} \le 0.3} \right]}}}\\ {\frac{1}{{\left[ {0.2, 0.2 \le {{\overline x }_{12}} \le 0.5} \right]}}}&{\frac{1}{{\left[ {0.5 \le {{\underline x }_{22}} \le 1, 0.7 \le {{\overline x }_{22}} \le 1} \right]}}} \end{array}} \right]. \end{array} |
This paper focused on the solution of IT2 FRE \widetilde A \circ \widetilde X = \widetilde B . First, the STP of interval matrices and its properties were introduced, and the matrix representation of the interval-valued logic was given. Then, the IT2 FRE was considered as the primary fuzzy matrix equation and secondary fuzzy matrix equation. The solution of secondary fuzzy matrix is known, so only the primary fuzzy matrix equation needs to be solved. Moreover, the solvability of the primary matrix equation was studied, and a specific algorithm for solving IT2 FREs based on the STP of interval matrices was given. Finally, a numerical example was given to verify the effectiveness of the proposed method.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work was supported in part by the Research Fund for the Taishan Scholar Project of Shandong Province of China under Grant tstp20221103, and in part by the National Natural Science Foundation of China under Grant 62273201.
The authors declare that there are no conflicts of interest in this paper.
[1] | Y. T. Leung, Handbook of Scheduling: Algorithms, Models, and Performance Analysis. CRC Press, Inc. 2004. |
[2] | M. Pinedo, Scheduling: Theory, Algorithms, and Systems, 4th ed., Boston, MA: Springer, New York, 2012. |
[3] | D. Mourtzis, Internet based collaboration in the manufacturing supply chain, Cirp J. Manufact. Sci. Technol., 4 (2011), 296–304. |
[4] | T. F. Gonzalez and S. Sahni, Open shop scheduling to minimize finish time, J. ACM, 23 (1976), 665–679. |
[5] | D. Bai, Z. Zhang, Q. Zhang, et al., Open shop scheduling problem to minimize total weighted completion time, Eng. Optimiz., 49 (2017), 98–112. |
[6] | J. Blazewicz, W. Domschke and E. Pesch, The job shop scheduling problem: Conventional and new solution techniques, Eur. J. Oper. Res., 93 (1996), 1–33. |
[7] | R. L. Graham, E. L. Lawler, J. K. Lenstra, et al., Optimization and approximation in deterministic sequencing and scheduling: a survey, Annals discrete mathematics (1979), 287–326. |
[8] | M. Pinedo, Scheduling: theory, algorithms, and systems. Prentice Hall, USA, 2002. |
[9] | D. Bai and L. Tang, Open shop scheduling problem to minimize makespan with release dates, Appl. Math. Model., 37 (2013), 2008–2015. |
[10] | E. L. Lawler, J. K. Lenstra, A. H. Kan, et al., Minimizing maximum lateness in a two-machine open shop, Math. Oper. Res., 6 (1981), 153–158. |
[11] | R. Chen, W. Huang and G. Tang, Dense open-shop schedules with release times, Theor. Comput. Sci., 407 (2008), 389–399. |
[12] | P. Brucker, J. L. Hurink, B. Jurisch, et al. A branch & bound algorithm for the open-shop problem, Discret Appl. Math., (1997), 43–59. |
[13] | U. Dorndorf, P. Erwin and T. Phanhuy, Solving the open shop scheduling problem, J. Sched., 4 (2001), 157–174. |
[14] | C. Liaw, A hybrid genetic algorithm for the open shop scheduling problem, Eur. J. Oper. Res., 124 (2000), 28–42. |
[15] | F. Ahmadizar and M. H. Farahani, A novel hybrid genetic algorithm for the open shop scheduling problem, Int. J. Adv. Manuf. Technol., 62 (2012), 775–787. |
[16] | X. Li, L. Gao, Q. Pan, et al., An Effective Hybrid Genetic Algorithm and Variable Neighborhood Search for Integrated Process Planning and Scheduling in a Packaging Machine Workshop, IEEE Trans. Syst. Man Cybern., (2018), 1–13. |
[17] | X. Li, L. Gao, W. Wang, et al., Particle swarm optimization hybridized with genetic algorithm for uncertain integrated process planning and scheduling with interval processing time, Comput. Ind. Eng., (2019). |
[18] | X. Li, S. Xiao, C. Wang, et al., Mathematical modeling and a discrete artificial bee colony algorithm for the welding shop scheduling problem, Memet. Comput., (2019), 1–19. |
[19] | X. Li, C. Lu, L. Gao, et al., An Effective Multiobjective Algorithm for Energy-Efficient Scheduling in a Real-Life Welding Shop, IEEE Trans. Ind. Inform., 14 (2018), 5400–5409. |
[20] | A. Barabasi and R. Albert, Emergence of Scaling in Random Networks, Science, 286 (1999), 509–512. |
[21] | D. J. Watts and S. H. Strogatz, Collective dynamics of 'small-world' networks, Nature, 393 (1998), 440–442. |
[22] | Q. Xuan and T. J. Wu, Network model and heuristic scheduling rule designing method for complex open shop problems, J. Zhejiang University Eng. Sci. Edition, 45 (2011), 961–968. |
[23] | Q. Xuan and T. J. Wu, Open shop complex scheduling network model and characteristic analysis, J. Zhejiang University. Eng. Sci., 45 (2011), 589–595. |
[24] | X. Li, Y. Yuan, W. Sun, et al. Bottleneck identification in job-shop based on network structure characteristic, Comput. Integr. Manuf., 4 (2016), 23. |
[25] | D. H. Wolpert and W. G. Macready, No free lunch theorems for optimization, IEEE T. Evol. Comput., 1 (1997), 67–82. |
[26] | A. S. Manne, On the job-shop scheduling problem, Oper. Res., 8 (1960), 219–223. |
[27] | L. Lu, D. Chen, X. Ren, et al. Vital nodes identification in complex networks, Phys. Rep. Rev. Sec. Phys. Lett., 650 (2016), 1–63. |
[28] | T. Bian and Y. Deng, Identifying influential nodes in complex networks: A node information dimension approach, Chaos, 28 (2018). |
[29] | E. D. Taillard, Benchmarks for basic scheduling problems, Eur. J. Oper. Res., 64 (1993), 278–285. |
[30] | G. C. Ciro, F. Dugardin, F. Yalaoui, et al., Open shop scheduling problem with a multi-skills resource constraint: a genetic algorithm and an ant colony optimisation approach, Int. J. Prod. Res., 54 (2016), 4854–4881. |
[31] | A. Clauset, C. R. Shalizi and M. E. J. Newman, Power-law distributions in empirical data, SIAM Rev., 51 (2009), 661–703. |
[32] | Y. S. Virkar, Power-Law Distributions and Binned Empirical data, Ann. Appl. Stat., 8 (2014), 89–119. |