
Mathematical Biosciences and Engineering, 2019, 16(5): 43144338. doi: 10.3934/mbe.2019215.
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
On the role of vector modeling in a minimalistic epidemic model
1 Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, ul. Akademik Georgi Bonchev 8, 1113 Sofia, Bulgaria
2 Dipartimento di Matematica “Giuseppe Peano”, Universit`a di Torino, via Carlo Alberto 10, 10123 Torino, Italy; Member of the INdAM research group GNCS
3 Dipartimento di Matematica, Universit`a degli Studi di Trento, via Sommarive 14, 38123 Povo Trento, Italy
4 Faculdade de Ciˆencias da Universidade de Lisboa, Campo Grande, C6Piso 1, Gabinete C6.1.18, 1749016 Lisboa, Portugal
5 Faculty of Science, VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
Received: , Accepted: , Published:
Special Issues: Mathematical Methods in the Biosciences
Keywords: asymptotic expansions; epidemic models; seasonallyforced models; quasi steady state assumption; geometrical singular perturbation; vector borne disease dynamics
Citation: Peter Rashkov, Ezio Venturino, Maira Aguiar, Nico Stollenwerk, Bob W. Kooi. On the role of vector modeling in a minimalistic epidemic model. Mathematical Biosciences and Engineering, 2019, 16(5): 43144338. doi: 10.3934/mbe.2019215
References:
 1. N. Ferguson, R. Anderson and S. Gupta, The effect of antibodydependent enhancement on the transmission dynamics and persistence of multiplestrain pathogens, Proc. Natl. Acad. Sci. USA, 96 (1999), 790–794.
 2. L. Billings, I. B. Schwartz, L. B. Shaw, et al., Instabilities in multiserotype disease models with antibodydependent enhancement, J. Theor. Biol., 246 (2007), 18–27.
 3. M. Aguiar, S. Ballesteros, B. W. Kooi, et al., The role of seasonality and import in a minimalistic multistrain dengue model capturing differences between primary and secondary infections: complex dynamics and its implications for data analysis, J. Theor. Biol., 289 (2011), 181–196.
 4. B. W. Kooi, M. Aguiar and N. Stollenwerk, Bifurcation analysis of a family of multistrain epidemiology models, J. Comput. Appl. Math., 252 (2013), 148–158.
 5. T.T. Zheng and L.F. Nie, Modelling the transmission dynamics of twostrain Dengue in the presence awareness and vector control, J. Theor. Biol., 443 (2018), 82–91.
 6. Z. Feng and J. X. VelascoHernandez, Competitive exclusion in a vectorhost model for the dengue fever, J. Math. Biol., 35 (1997), 523–544.
 7. M. Zhu and Y. Xu, A timeperiodic dengue fever model in a heterogeneous environment, Math. Comput. Simulat., 155 (2019), 115–129.
 8. B. Althouse, J. Lessler, A. Sall, et al., Synchrony of sylvatic dengue isolations: A multihost, multivector SIR model of dengue virus transmission in Senegal, PLoS Negl. Trop. Dis., 6 (2012), e1928.
 9. F. Rocha, M. Aguiar, M. Souza, et al., Timescale separation and centre manifold analysis describing vectorborne disease dynamics, Int. J. Comput. Math., 90 (2013), 2105–2125.
 10. A. Segel and M. Slemrod, The QuasiSteadyState Assumption: A case study in perturbation, SIAM Rev., 31 (1989), 446–477.
 11. F. Rocha, L. Mateus, U. Skwara, et al., Understanding dengue fever dynamics: a study of seasonality in vectorborne disease models, Int. J. Comput. Math., 93 (2016), 1405–1422.
 12. T. G¨otz, K. P. Wijaya and E. Venturino, Introducing seasonality in an SIRUV epidemic model: an application to dengue, in 18th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2018 (ed. J. V. Aguiar), Wiley Online Library, 2018, Online ISSN:25777408.
 13. Y. Nagao and K. Koelle, Decreases in dengue transmission may act to increase the incidence of dengue hemorrhagic fever, Proc. Natl. Acad. Sci. USA, 105 (2008), 2238–2243.
 14. C. K. R. T. Jones, Geometric singular perturbation theory, in Dynamical Systems: Lectures Given at the 2nd Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Montecatini Terme, Italy, June 13–22, 1994 (ed. R. Johnson), Springer, Berlin, Heidelberg, 1995, 44–118.
 15. G. Hek, Geometric singular perturbation theory in biological practice, J. Math. Biol., 60 (2010), 347–386.
 16. B. W. Kooi and J.C. Poggiale, Modelling, singular perturbation and bifurcation analyses of bitrophic food chains, Math. Biosci., 301 (2018), 93–110.
 17. C. S. Holling, Some characteristics of simple types of predation and parasitism, Can. Entomol., 91 (1959), 385–398.
 18. M. L. Rosenzweig and R. H. MacArthur, Graphical representation and stability conditions of predatorprey interactions, Am. Nat., 97 (1963), 209–223.
 19. N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana U. Math. J., 21 (1971), 193–226.
 20. N. Fenichel, Geometric singular perturbation theory, J. Differ. Equations, 31 (1979), 53–98.
 21. A. Korobeinikov, Lyapunov functions and global properties for SEIR and SEIS epidemic models, Math. Med. Biol., 21 (2004), 75–83.
 22. M. Kot, Elements of Mathematical Ecology, Cambridge University Press, Cambridge, 2001.
 23. O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382.
 24. O. Diekmann and J. A. P. Heesterbeek, Mathematical epidemiology of infectious diseases, Wiley series in mathematical and computional biology, Wiley, Chichester, 2000.
 25. V. Capasso and G. Serio, A generalization of the KermackMcKendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43–61.
 26. K. Dietz, Overall population patterns in the transmission cycle of infectious disease agents, in Population biology of infectious diseases (eds. R. M. Anderson and R. M. May), Springer, Berlin, Heidelberg, 1982, 87–102.
 27. J. MenaLorca and H. W. Hethcote, Dynamic models of infectious diseases as regulators of population size, J. Math. Biol., 30 (1992), 693–716.
 28. B. W. Kooi, G. A. K. van Voorn and K. P. Das, Stabilization and complex dynamics in a predatorprey model with predator suffering from an infectious disease, Ecol. Complex., 8 (2011), 113–122.
 29. F. Irwin and H. N. Wright, Some properties of polynomial curves, Ann. Math. Second Series, 19 (1917), 152–158.
 30. L. EdelsteinKeshet, Mathematical Models in Biology, SIAM, Philadelphia, 2005.
 31. E. J. Doedel and B. Oldeman, AUTO 07p: Continuation and Bifurcation software for ordinary differential equations, Technical report, Concordia University, Montreal, Canada, 2009.
 32. A.M. Helt and E. Harris, Sphasedependent enhancement of dengue virus 2 replication in mosquito cells, but not in human cells, J. Virology, 79 (2005), 13218–13230.
 33. J. Hily, A. García, A. Moreno, M. Plaza, M.Wilkinson, A. Fereres, A. Fraile and F. GarcíaArenal, The relationship between host lifespan and pathogen reservoir potential: An analysis in the system Arabidopsis thalianaCucumber mosaic virus, PLoS Pathog., 10 (2014), e1004492.
 34. N. M. Nguyen, D. Thi Hue Kien, T. V. Tuan, et al., Host and viral features of human dengue cases shape the population of infected and infectious Aedes aegypti mosquitoes, Proc. Natl. Acad. Sci. USA, 110 (2013), 9072–9077.
 35. J. Yu, Modeling mosquito population suppression based on delay differential equations, SIAM J. Appl. Math., 78 (2018), 3168–3187.
 36. M. R. W. de Valdez, D. Nimmo, J. Betz, et al., Genetic elimination of dengue vector mosquitoes, Proc. Natl. Acad. Sci. USA, 108 (2011), 4772–4775.
Reader Comments
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *