Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

A reversible database watermarking method with low distortion

1 State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450001, Henan, China
2 Zhengzhou University, Zhengzhou 450001, Henan, China
3 Beijing Institute of Electronic Technology Application, Beijing 100000, China
4 State University of New York at Buffalo, USA

Special Issues: Information Multimedia Hiding & Forensics based on Intelligent Devices

In this paper, a low distortion reversible database watermarking method based on histogram gap is proposed in view of the large gap in histogram of database integer data. By using the method, the tolerance of the attribute column containing all integer data is firstly calculated and the prediction error is obtained according to the tolerance. Then according to the watermark bits to be embedded, the database tuples will be randomly grouped and the histogram can be constructed by using the prediction error. Finally, the histogram correction rule is used to find the histogram peak bin, the number of consecutive non-zero prediction errors on the left and right sides of the peak is obtained, and the histogram shift is performed on the side with a smaller number of non-zero prediction errors, and then the watermark embedding will be realized. The results of the experiments based on the published dataset of FCTD (Forest Cover Type Dataset) show that compared with the existing GAHSW which also considers distortion, the proposed method significantly reduces the number of histogram column shift while embedding the watermarks, greatly reduces the changes to the carrier data, and effectively reduces the database’s data distortion caused by watermark embedding.
  Article Metrics

Keywords database watermark; reversible watermark; histogram gap; data distortion; histogram column shift

Citation: Yan Li, Junwei Wang, Shuangkui Ge, Xiangyang Luo, Bo Wang. A reversible database watermarking method with low distortion. Mathematical Biosciences and Engineering, 2019, 16(5): 4053-4068. doi: 10.3934/mbe.2019200


  • 1. N. Gursale and A. Mohanpurkar, A robust, distortion minimization fingerprinting technique for relational database, IJRITCC, 2(2014), 1737–1741.
  • 2. R. Agrawal and J. Kiernan, Watermarking relational databases, VLDB, Elsevier, Hong Kong, China, 28 (2002), 155–166.
  • 3. R. Sion, Proving ownership over categorical data, ICDE, Boston, (2004), 584–596.
  • 4. R. Sion, M. Atallah and S. Prabhakar, Rights protection for categorical data, IEEE Trans. Knowl. Data Eng., 17(2005), 912–926.
  • 5. S. Liu, S. Wang, R. Deng, et al, A block oriented fingerprinting scheme in relational database, ISCISC, Seoul, Korea, (2004), 145–192.
  • 6. M. Shehab, E. Bertino and A. Ghafoor, Watermarking relational databases using optimization-based techniques, IEEE Trans. Knowl. Data Eng., 20 (2008), 116–129.
  • 7. Y. Zhang, B. Yang and X. Niu, Reversible watermarking for relational database authentication, JCP, 17 (2006), 59–65.
  • 8. J. Chang and H. Wu, Reversible fragile database watermarking technology using difference expansion based on SVR prediction, IS3C, Taiwan, China, (2012), 690–693.
  • 9. E. Mahmoud, H. Farfoura and X. Wang, A novel blind reversible method for watermarking relational databases, JCIE, 36 (2013), 87–97.
  • 10. V. Khanduja, S. Chakraverty and O. Verma, Enabling information recovery with ownership using robust multiple watermarks, JISA, 29 (2016), 80–92.
  • 11. G. Gupta and J. Pieprzyk, Reversible and blind database watermarking using difference expansion, IJDCF, 1 (2008), 42–54.
  • 12. G. Gupta and J. Pieprzyk, Database relation watermarking resilient against secondary watermarking attacks, Inform. System. Secur., Springer, (2009), 222–236.
  • 13. S. Bhattacharya and A. Cortesi, A distortion free watermark framework for relational databases, ICSDT, Sofia, Bulgaria, (2013), 229–234.
  • 14. K. Jawad and A. Khan, Genetic algorithm and difference expansion based reversible watermarking for relational databases, J. System Software, 86 (2013), 2742–2753.
  • 15. M. Farfoura and A. Horng, A novel blind reversible method for watermarking relational databases, ISPA, (2010), 563–569.
  • 16. S. Iftikhar, M. Kamran and Z. Anwar, RRW-a robust and reversible watermarking technique for relational data, IEEE Trans. Knowl. Data Eng., 27 (2015), 1132–1145.
  • 17. D. H. Hu, D. Zhao and S. L. Zheng, A new robust approach for reversible database watermarking with distortion control, IEEE Trans. Knowl. Data Eng., (2018), DOI: 10.1109/TKDE.2018.2851517.
  • 18. Y. Cao, Z. L. Zhou, X. M. Su, et al., Coverless information hiding based on the molecular structure images of material, CMC, 54 (2018), 197–207.
  • 19. W.J. Xu, S.J. Xiang and V. Sachnev, A Cryptograph Domain Image Retrieval Method Based on Paillier Homomorphic Block Encryption, CMC, 55 (2018), 285–295.
  • 20. J. W. Wang, T. Li, X. Y. Luo, et al., Identifying computer generated images based on quaternion central moments in color quaternion wavelet domain, TCSVT, (2018), DOI: 10.1109/TCSVT.2018.2867786.
  • 21. Y. Du, Z. X. Yin and X. P. Zhang, Improved lossless data hiding for jpeg images based on histogram modification, CMC, 55 (2018), 495–507.
  • 22. Y. Zhang, C. Qin, W. M. Zhang, et al., On the fault-tolerant performance for a class of robust image steganography, Signal Process.g, 146 (2018), 99–111.
  • 23. X. Y. Luo, X. F. Song, X. L. Li, et al., Steganalysis of HUGO steganography based on parameter recognition of syndrome-trellis-codes, Mult Tool Appl., 75 (2016), 13557–13583.
  • 24. T. Qiao, R. Shi, X. Y. Luo, et al., Statistical model-based detector via texture weight map: Application in re-sampling authentication, TMM, (2018), DOI: 10.1109/TMM.2018.2872863.
  • 25. Y. Y. Ma, X. Y. Luo, X. L. Li, et al., Selection of rich model steganalysis features based on decision rough set α-positive region reduction, TCSVT, 29 (2019), 336–350.


This article has been cited by

  • 1. Heyan Chai, Shuqiang Yang, Zoe L. Jiang, Xuan Wang, Yiqun Chen, Hengyu Luo, , Algorithms and Architectures for Parallel Processing, 2020, Chapter 11, 153, 10.1007/978-3-030-38991-8_11
  • 2. Ali Hamadou, Lanciné Camara, Abdoul Aziz Issaka Hassane, Harouna Naroua, Reversible Fragile Watermarking Scheme for Relational Database Based on Prediction-Error Expansion, Mathematical Problems in Engineering, 2020, 2020, 1, 10.1155/2020/1740205
  • 3. Yan Li, Junwei Wang, Xiangyang Luo, A reversible database watermarking method non-redundancy shifting-based histogram gaps, International Journal of Distributed Sensor Networks, 2020, 16, 5, 155014772092176, 10.1177/1550147720921769

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved