
Mathematical Biosciences and Engineering, 2019, 16(5): 37713806. doi: 10.3934/mbe.2019187.
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
The stochastic extinction and stability conditions for nonlinear malaria epidemics
Department of Mathematical Sciences, Georgia Southern University, 65 Georgia Ave, Room 3042, Statesboro, Georgia, 30460, USA
Received: , Accepted: , Published:
Special Issues: Mathematical Modeling of MosquitoBorne Diseases
Keywords: diseasefree steady state; stability in the mean; basic reproduction number; sample lyapunov exponent; survival probability
Citation: Divine Wanduku. The stochastic extinction and stability conditions for nonlinear malaria epidemics. Mathematical Biosciences and Engineering, 2019, 16(5): 37713806. doi: 10.3934/mbe.2019187
References:
 1. World malaria report 2017, Licence: CC BYNCSA 3.0, World Health Organization, Geneva, 2017.
 2. D. Wanduku, Threshold conditions for a family of epidemic dynamic models for malaria with distributed delays in a nonrandom environment, Int. J. Biomath., 11 (2018), 1850085–1850130.
 3. Dengue control, Report of World Health Organization, 2019. Available from: http://www.who. int/denguecontrol/human/en/.
 4. Malaria, Report of Global Health, Division of Parasitic Diseases and Malaria, 2019. Available from: https://www.cdc.gov/malaria/about/disease.html.
 5. J. M. Crutcher and S. L. Hoffman, Malaria, Chapter 83malaria, Medical Microbiology, 4th edition, Galveston (TX), University of Texas Medical Branch at Galveston, 1996.
 6. D. L. Doolan, C. Dobano and J. K. Baird, Acquired Immunity to Malaria, Clin. Microbiol. Rev.,22 (2009), 13–36.
 7. L. Hviid, Naturally acquired immunity to Plasmodium falciparum malaria, Acta Trop., 95 (2005), 270–275.
 8. E. Avila and V. Buonomo, Analysis of a mosquitoborne disease transmission model with vector stages and nonlinear forces of infection, Ric. Mat., 64 (2015), 377–390.
 9. Z. Bai and Y. Zhou, Global dynamics of an SEIRS epidemic model with periodic vaccination and seasonal contact rate, Nonlinear Anal. Real World Appl., 13 (2012), 1060–1068.
 10. M. De la Sena, S. AlonsoQuesadaa and A. Ibeasb, On the stability of an SEIR epidemic model withdistributedtimedelayandageneralclassoffeedbackvaccinationrules, Appl.Math.Comput.,270 (2015), 953–976.
 11. M. De la Sen, S. AlonsoQuesada and A. Ibeas, On the stability of an SEIR epidemic model with distributed timedelay and a general class of feedback vaccination rules, Appl. Math. Comput., 270 (2015), 953–976.
 12. N. H. Du and N. N. Nhu, Permanence and extinction of certain stochastic SIR models perturbed by a complex type of noises, Appl. Math. Lett., 64 (2017), 223–230.
 13. Z. Jiang, W. Ma and J. Wei, Global Hopf bifurcation and permanence of a delayed SEIRS epidemic model, Math. Comput. Simulation, 122 (2016), 35–54.
 14. Q. Liu, D. Jiang, N. Shi, et al., Asymptotic behaviors of a stochastic delayed SIR epidemic model with nonlinear incidence, Commun. Nonlinear Sci. Numer. Simul., 40 (2016), 89–99.
 15. Q. Liu and Q. Chen, Analysis of the deterministic and stochastic SIRS epidemic models with nonlinear incidence, Phys. A, 428 (2015), 140–153.
 16. J. P. Mateus and C. M. Silva, Existence of periodic solutions of a periodic SEIRS model with general incidence, Nonlinear Anal. Real World Appl., 34 (2017), 379–402.
 17. J. P. Mateus and C. M. Silva, A nonautonomous SEIRS model with general incidence rate, Appl. Math. Comput., 247 (2014), 169–189.
 18. L. Pang, S. Ruan, S. Liu, et al., Transmission dynamics and optimal control of measles epidemics,Appl. Math. Comput., 256 (2015), 131–147.
 19. S. Syafruddin and M. Salmi Md. Noorani, Lyapunov function of SIR and SEIR model for transmission of dengue fever disease, Int. J. Simul. Process Model., 8 (2013), 2–3.
 20. D. Wanduku, Complete Global Analysis of a TwoScale Network SIRS Epidemic Dynamic Model with Distributed Delay and Random Perturbation,J. Appl. Math. Comput., 294 (2017), 49–76.
 21. D. Wanduku and G. S. Ladde, Fundamental Properties of a Twoscale Network stochastic human epidemic Dynamic model, Neural Parallel Sci. Comput., 19 (2011), 229–270.
 22. R. Ross, The Prevention of Malaria, John Murray, London, 1911.
 23. R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford, 1991.
 24. N. Chitnis, J. M. Hyman and J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008), 1272–1296.
 25. M. Y. Hyun, Malaria transmission model for different levels of acquired immunity and temperature dependent parameters (vector). Rev. Saude Publica, 34 (2000), 223–231.
 26. G. Macdonald, The analysis of infection rates in diseases in which superinfection occurs. Trop. Dis. Bull., 47 (1950), 907–915.
 27. G. A. Ngwa and W. Shu, A mathematical model for endemic malaria with variable human and mosquito population, Math. computer. model., 32 (2000), 747–763.
 28. G. A. Ngwa, A. M. Niger and A. B. Gumel, Mathematical assessment of the role of nonlinear birth and maturation delay in the population dynamics of the malaria vector, Appl. Math. Comput.,217 (2010), 3286–3313.
 29. C. N. Ngonghala , G. A. Ngwa and M. I. TebohEwungkem, Periodic oscillations and backward bifurcation in a model for the dynamics of malaria transmission. Math. Biosci., 240 (2012), 45–62.
 30. M. I. TebohEwungkem and T. Yuster, A withinvector mathematical model of plasmodium falciparum and implications of incomplete fertilization on optimal gametocyte sex ratio, J. Theory Biol., 264 (2010), 273–286.
 31. R. Reiner, M. Geary, P. Atkinson, et al., Seasonality of Plasmodium falciparum transmission: a systematic review, Malar. J, 14 (2015), 343.
 32. A. Teklehaimanot and P. Mejia, Malaria and poverty, Ann. N. Y. Acad. Sci., 1136 (2008), 32–37.
 33. D. Wanduku and G. S. Ladde, Global properties of a twoscale network stochastic delayed human epidemic dynamic model, Nonlinear Anal. Real World Appl., 13 (2012), 794–816.
 34. E. Beretta, V. Kolmanovskii and L. Shaikhet, Stability of epidemic model with time delay influenced by stochastic perturbations, Math. Comput. Simulat., 45 (1998), 269–277.
 35. E. J. Allen, L. J. S. Allen, A. Arciniega, et al., Construction of equivalent stochastic differential equation models, Stoch. Anal. Appl. , 26 (2008), 274–297.
 36. Y. Cai, J. jiao, Z. Gui, et al., Environmental variability in a stochastic epidemic model, Appl. Math. Comput., 329 (2018), 210–226.
 37. M. Krstic, The effect of stochastic perturbation on a nonlinear delay malaria epidemic model,Math. Comput. Simulat., 82 (2011), 558–569.
 38. P. V. V. Le, P. Kumar and M. O. Ruiz, Stochastic latticebased modelling of malaria dynamics,Malar. J., 17 (2018), 250.
 39. D. Wanduku, A comparative stochastic and deterministic study of a class of epidemic dynamic models for malaria: exploring the impacts of noise on eradication and persistence of disease, preprint arXiv:1809.03897.
 40. Y. Cai, Y. Kang and W. Wang, a stochastic SIRS epidemic model with nonlinear incidence, Appl. Math. Comput., 305 (2017), 221–240.
 41. Y. Cai, Y. kang, M. Banerjee, et al., A stochastic epidemic model incorporating media coverage,Commun. math sci., 14 (2016), 893–910.
 42. A. Gray, D. Greenhalgh, L. Hu, et al., A Stochastic Differential Equation SIS Epidemic Model,SIAM J. Appl. Math., 71 (2011), 876–902.
 43. A. lahrouz and L. Omari, extinction and stationary distribution of a stochastic SIRS epidemic model with nonlinear incidence, Statist. Probab. Lett., 83 (2013), 960–968
 44. Y. zhang, K. Fan, S. Gao, et al., A remark on stationary distribution of a stochastic SIR epidemic model with double saturated rates, Appl. Math. Lett., 76 (2018), 46–52.
 45. Y. Zhou, W. Zhang, S. Yuan, et al., Persistence And Extinction in Stochastic Sirs Models With General Nonlinear Incidence Rate, Electron. J. Differ. Eq., 2014 (2014), 1–17.
 46. K. L. Cooke, Stability analysis for a vector disease model. Rocky Mountain J. Math., 9 (1979), 31–42.
 47. C. McCluskey, Global Stability of an SIR epidemic model with delay and general nonlinear incidence, Math. Biosci. Eng., 4 (2010), 837–850.
 48. Y. Takeuchi, W. Ma and E. Beretta, Global asymptotic properties of a delay SIR epidemic model with finite incubation times, Nonlinear Anal., 42 (2000), 931–947.
 49. D. Wanduku, Modeling Highly Random Dynamical Infectious Systems, in Applied Mathematical Analysis: Theory, Methods, and Applications (eds. Dutta H., Peters J.), Studies in Systems, Decision and Control, 177 (2020), Springer, Cham.
 50. D. Wanduku and G. S. Ladde, The global analysis of a stochastic twoscale Network Human Epidemic Dynamic Model With Varying Immunity Period, J. Appl. Math. Phys., 5 (2017), 1150–1173.
 51. D. Wanduku and G. S. Ladde, Global Stability of TwoScale Network Human Epidemic Dynamic Model, Neural Parallel Sci. Comput., 19 (2011), 65–90.
 52. M. Zhien and C. Guirong, Persistence and extinction of a population in a polluted environment,Math Biosci., 101 (1990), 75–97.
 53. X. Zhang, D. Jiang, T. Hayat, et al., Dynamics of stochastic SIS model with doubles epidemic diseases driven by levy jumps, Phys. A, 47 (2017), 767–777.
 54. X. Mao, Stochastic differential equations and applications, 2nd ed, Horwood Publishing Ltd., 2008.
 55. D.Wanduku, SomestochasticstabilitypropertiesofanonlinearfamilyofSEIRSepidemicmodels, in press, 2019.
 56. S. Ruan, D. Xiao and J. C. Beier, On the delayed rossmacdonald model for malaria transmission.Bull. Math. Biol., 70 (2008), 1098–1114.
 57. R. E. Howes, K. E. Battle, K. N. Mendis, et al., Global Epidemiology of Plasmodium vivax, Am. J. Trop. Med. Hyg., 95 (2016), 15–34.
 58. Aedes aegypti in Brazil, Report of OXITEC, 2019. Available from: https://www.oxitec.com/friendlymosquitoes/brazil/.
 59. Piracicaba, SP, Report of Atlas of Human Development in Brazil, 2019. Available from: http: //www.atlasbrasil.org.br/2013/en/perfil_m/piracicaba_sp/.
 60. The World Factbook, Report of Central Intelligence Agency, 2019. Available from: https://www.cia.gov/library/publications/theworldfactbook/geos/br.html.
 61. World Malaria Report 2011, Report of World Health Organization, 2011. Available from: https: //www.who.int/malaria/publications/atoz/9789241564403/en/.
 62. M. T Bretscher, N. Maire, I. Felger, et al. , Asymptomatic Plasmodium falciparum infections may not be shortened by acquired immunity, Malar. J., 14 (2015), 294.
 63. S. M. Moghadas and A. B. Gumel, Global Stability of a twostage epidemic model with generalized nonlinear incidence, Math. Comput. Simulat., 60 (2002), 107–118.
 64. K. L. Cooke and P. van den Driessche, Analysis of an SEIRS epidemic model with two delays, J. Math Biol. 35 (1996), 240–260.
Reader Comments
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *