Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Parameterizing a dynamic influenza model using longitudinal versus age-stratified case notifications yields different predictions of vaccine impacts

1 Department of Mathematics and Statistics, University of Guelph, 50 Stone Rd. E. Guelph, Ontario, Canada N1G 2W1
2 Department of Applied Mathematics, University of Waterloo, 200 University Ave. W. Waterloo, Ontario, Canada N2L 3G1

Special Issues: Mathematical Methods in the Biosciences

Dynamic transmission models of influenza are sometimes used in decision-making to identify which vaccination strategies might best reduce influenza-associated health burdens. Our goal was to use laboratory confirmed influenza cases to fit model parameters in an age-structured, two-type (influenza A/B) dynamic model of influenza. We compared the fitted model under two fitting methodologies: using longitudinal weekly case notification data versus using cross-sectional age-stratified cumulative case notification data. The longitudinal data came from a Canadian province (Ontario)whereasthecross-sectionaldatacamefromthenationallevel(allofCanada). Wefindthatthe longitudinal fitting method provides best fitting parameter sets that have a higher variance between the respective parameters in each set than the cross-sectional cumulative case method. Model predictions–particularly for influenza A–are very different for the two fitting methodologies under hypothetical vaccination scenarios that expand coverage in either younger age classes or older age classes: the cross-sectional method predicts much larger decreases in total cases under expanded vaccine coverage than the longitudinal method. Also, the longitudinal method predicts that vaccinating younger age groups yields greater declines in total cases than vaccinating older age groups, whereas the cross- sectional method predicts the opposite. We conclude that model predictions of vaccination impacts under different strategies may differ at national versus provincial levels. Finally, we discuss whether usinglongitudinalversuscross-sectionaldatainmodelfittingmaygeneratefurtherdifferencesinmodel predictions (above and beyond population-specific differences) and how such a hypothesis could be tested in future studies.
  Article Metrics

Keywords epidemic modelling; influenza; vaccination; parameter estimation

Citation: Michael A. Andrews, Chris T. Bauch. Parameterizing a dynamic influenza model using longitudinal versus age-stratified case notifications yields different predictions of vaccine impacts. Mathematical Biosciences and Engineering, 2019, 16(5): 3753-3770. doi: 10.3934/mbe.2019186


  • 1. L. Simonsen, The global impact of influenza on morbidity and mortality, Vaccine, 17 (1999), S3–S10.
  • 2. C. Bauch and D. Rand, A moment closure model for sexually transmitted disease transmission through a concurrent partnership network, Proc. R. Soc. Lond. B, 267 (2000), 2019–2027.
  • 3. D. Rand and H. Wilson, Chaotic stochasticity: a ubiquitous source of unpredictability in epidemics, Proc. R. Soc. Lond. B, 246 (1991), 179–184.
  • 4. C. Innes, M. Anand and C.T. Bauch, The impact of human-environment interactions on the stability of forest-grassland mosaic ecosystems, Sci. Rep., 3 (2013), 2689.
  • 5. van B. Minus and R. A. David, The unit of selection in viscous populations and the evolution of altruism, J. Theor. Biol., 193 (1998), 631–648.
  • 6. D. A. Rand and H. B. Wilson, Using spatio-temporal chaos and intermediate-scale determinism to quantify spatially extended ecosystems, Proc. R. Soc. Lond. B, 259 (1995), 111–117.
  • 7. D. J. Earn, P. Rohani, B. M. Bolker, et al., A simple model for complex dynamical transitions in epidemics, Science, 287 (2000), 667–670.
  • 8. M. Keeling, D. Rand and A. Morris, Correlation models for childhood epidemics, Proc. R. Soc. Lond. B, 264 (1997), 1149–1156.
  • 9. J. Dushoff, J. Plotkin, C. Viboud, et al., Vaccinating to protect a vulnerable subpopulation, PLOS Med., 4 (2007), e174.
  • 10. M. Alexander, C. Bowman, S. Moghadas, et al., A vaccination model for transmission dynamics of influenza, SIAM J. Appl. Dyn. Sys., 3 (2004), 503–524.
  • 11. J. Glasser, D. Taneri, Z. Feng, et al., Evaluation of targeted influenza vaccination strategies via population modeling, PLOS One, 5 (2010), e12777.
  • 12. J. M. Tchuenche, N. Dube, C. P. Bhunu, et al., The impact of media coverage on the transmission dynamics of human influenza, BMC Public Health, 11 (2011), S5.
  • 13. S. P. Tully, A. M. Anonychuk, D. M. Sanchez, et al., Time for change? an economic evaluation of integrated cervical screening and hpv immunization programs in Canada, Vaccine, 30 (2012), 425–435.
  • 14. C. R. Wells and C. T. Bauch, The impact of personal experiences with infection and vaccination on behaviour–incidence dynamics of seasonal influenza, Epidemics, 4 (2012), 139–151.
  • 15. C. Wells, E. Klein and C. Bauch, Policy resistance undermines superspreader vaccination strategies for influenza, PLOS Comput. Biol., 9 (2013), e1002945.
  • 16. Y. Hsieh, Age groups and spread of influenza: Implications for vaccination strategy, BMC Infect. Dis., 10 (2010), 106.
  • 17. M. Baguelin, S. Flasche, A. Camacho, et al., Assessing optimal target populations for influenza vaccination programmes: An evidence synthesis and modelling study, PLOS Med., 10 (2013), e1001527.
  • 18. E. Thommes, A. Chit, G. Meier, et al., Examining ontario's universal influenza immunization program with a multi-strain dynamic model, Vaccine, 32 (2014), 5098–5117.
  • 19. M. A. Andrews and C. T. Bauch, Disease interventions can interfere with one another through disease-behaviour interactions, PLoS Comput. Biol., 11 (2015), e1004291.
  • 20. M. A. Andrews and C. T. Bauch, The impacts of simultaneous disease intervention decisions on epidemic outcomes, J. Theor. Biol., 395 (2016), 1–10.
  • 21. J. Medlock and A. Galvani, Optimizing influenza vaccine distribution, Science, 325 (2009), 1705–1708.
  • 22. T. A. Reichert, N. Sugaya, D. S. Fedson, et al., The japanese experience with vaccinating schoolchildren against influenza, N. Engl. J. Med., 344 (2001), 889–896.
  • 23. A. Monto, F. M. Davenport and J. A. N. an T. Francis, Effect of vaccination of a school-age population upon the course of an A2/Hong Kong influenza epidemic, Bull. W.H.O., 41 (1969), 537–542.
  • 24. P. A. Piedra, M. J. Gaglani, C. A. Kozinetz, et al., Herd immunity in adults against influenza- related illnesses with use of the trivalent-live attenuated vaccine (CAIV-T) in children, Vaccine,23 (2005), 1540–1548.
  • 25. D. Weyecker, J. Edelsberg, M. E. Halloran, et al., Population-wide benefits of routine vaccination of children against influenza, Vaccine, 23 (2005), 1284–1293.
  • 26. M. E. Halloran, I. M. Longini, D. M. Cowart, et al., Community interventions and the epidemic prevention potential, Vaccine, 20 (2002), 3254–3262.
  • 27. I. M. Longini and M. E. Halloran, Strategy for distribution of influenza vaccine to high-risk groups and children, Am. J. Epidem., 161 (2005), 303–306.
  • 28. P. Beutels, Y. Vandendijck, L. Willem, et al., Seasonal influenza vaccination: prioritizing children or other target groups? Part II: cost-effectiveness analysis, Technical report, Belgian Health Care Knowledge Centre (KCE), 2013.
  • 29. E. Vynnycky and W. Edmunds, Analyses of the 1957 (asian) influenza pandemic in the united kingdom and the impact of school closures, Epidem. Infect., 136 (2008), 166–179.
  • 30. R. J. Pitman, Estimating the clinical impact of introducing paediatric influenza vaccination in england and wales, Vaccine, 30 (2012), 1208–1224.
  • 31. P. Poletti, M. Ajelli and S. Merler, The effect of risk perception on the 2009 H1N1 pandemic influenza dynamics, PLOS One, 6 (2011), e16460.
  • 32. J. T. Wu, K. Leung, R. Perera, et al., Inferring influenza infection attack rate from seroprevalence data, PLOS Pathogens, 10 (2014), e1004054.
  • 33. N. Goeyvaerts, L. Willem, K. V. Kerckhove, et al., Estimating dynamic transmission model parameters for seasonal influenza by fitting to age and season-specific influenza-like illness incidence, Epidemics, 13 (2015), 1–9.
  • 34. J. B. Axelson, R. Yaari, B. T. Grenfell, et al., Multiannual forecasting of seasonal influenza dynamics reveals climatic and evolutionary drivers, Proc. Natl. Acad. Sci. USA, 111 (2014), 9538–9542.
  • 35. R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, 1992.
  • 36. J. Mossong, N. Hens, M. Jit, et al., Social contacts and mixing patterns relevant to the spread of infectious diseases, PLOS Med., 5 (2008), e74.
  • 37. Ontario Ministry of Finance, Ontario Population Projections Update 2010-2036, 2011. Available from: http://www.fin.gov.on.ca/en/economy/demographics/projections/projections2010-2036.pdf.
  • 38. Ontario Ministry of Finance, Ontario Population Projections Update 2012-2036, 2013. Available from: http://www.fin.gov.on.ca/en/economy/demographics/projections/projections2012-2036.pdf.
  • 39. Ontario Ministry of Finance, Ontario Population by Age 2013-2041, 2015. Available from: http: //www.fin.gov.on.ca/en/economy/demographics/projections/table6.html.
  • 40. Statistics Canada, Focus on Geography Series, 2011 Census, 2012. Available from: http://www12.statcan.gc.ca/census-recensement/2011/as-sa/fogs-spg/Facts-pr-eng.cfm?Lang=Eng&GK=PR&GC=35.
  • 41. E. Zagheni, F. Billari, P. Manfredi, et al., Using time-use data to parameterize models for the spread of close-contact infectious diseases, Am. J. Epidem., 168 (2008), 1082–1090.
  • 42. Government of Canada Publications, FluWatch, 2015. Available from: http://publications. gc.ca/site/eng/9.507424/publication.html.
  • 43. J. Dushoff, J. B. Plotkin, S. A. Levin, et al., Dynamical resonance can account for seasonality of influenza epidemics, PNAS, 101 (2004), 16915–16916.
  • 44. C. Fuhrmann, The effects of weather and climate on the seasonality of influenza: What we know and what we need to know, Geog. Compass, 4 (2010), 718–730.
  • 45. J. Shaman and M. Kohn, Absolute humidity modulates influenza survival, transmission, and seasonality, Proc. Natl. Acad. Sci. USA, 106 (2009), 3243–3248.
  • 46. Ontario Ministry of Health and Long-Term Care, Universal Influenza Immunization Program, 2015. Available from: http://www.health.gov.on.ca/en/pro/programs/publichealth/flu/uiip/.
  • 47. J. Truscott, C. Fraser, W. Hinsley, et al., Quantifying the transmissibility of human influenza and its seasonal variation in temperate regions, PLOS Currents 1.
  • 48. E. Vynnycky, R. Pitman, R. Siddiqui, et al., Estimating the impact if childhood influenza vaccination programmes in england and wales, Vaccine, 26 (2008), 5321–5330.
  • 49. L. F. White, J. Wallinga, L. Finelli, et al., Estimation of the reproductive number and the serial interval in early phase of the 2009 influenza A/H1N1 pandemic in the USA, Influenza and Other Respiratory Viruses, 3 (2009), 267–276.
  • 50. C. Simpson, L. Ritchie, C. Robertson, et al., Effectiveness of H1N1 vaccine for the prevention of pandemic influenza in scotland, UK: A retrospective cohort study, Lancet Infect. Dis., 12 (2012), 696–702.
  • 51. K. Widgren, M. Magnusson, P. Hagstam, et al., Prevailing effectiveness of the 2009 influenza H1N1 pdm09 vaccine during the 2010/11 season in sweden, Eurosurveillance, 18 (2013), 20447.
  • 52. J. Breteler, J. Tam, M. Jit, et al., Efficacy and effectiveness of seasonal and pandemic A (H1N1) 2009 influenza vaccines in low and middle income countries: A systematic review and meta-analysis, Vaccine, 31 (2013), 5168–5177.
  • 53. J. Truscott, C. Fraser, S. Cauchemez, et al., Essential epidemiological mechanisms underpinning the transmission dynamics of seasonal influenza, J. Royal Soc. Interface, 9 (2011), 304–312.
  • 54. S. Blower and H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example, Int. Statist. Rev., 62 (1994), 229–243.
  • 55. M. Campitelli, M. Inoue, A. Calzavara, et al., Low rates of influenza immunization in young children under ontario's universal influenza immunization program, Pediatrics, 1421–1430.
  • 56. J. J. Cannell, M. Zasloff, C. F. Garland, et al., On the epidemiology of influenza, Virol. J., 5 (2008), 29.
  • 57. S. Cauchemez, A. Valleron, P. Boelle, et al., Estimating the impact of school closure on influenza transmission from sentinel data, Nature, 452 (2008), 750.
  • 58. G. Chowell, C. Ammon, N. Hengartner, et al., Estimation of the reproductive number of the Spanish flu epidemic in Geneva, Switzerland, Vaccine, 24 (2006), 6747–6750.
  • 59. N. Cox and C. Bender, The molecular epidemiology of influenza viruses, Sem. Virol., 6 (1995), 359–370.
  • 60. A. C. Hayward, E. B. Fragaszy, A. Bermingham, Comparative community burden and severity of seasonal and pandemic influenza: Results of the Flu Watch cohort study, Lancet Resp. Med., 2 (2014), 445–454.
  • 61. S. Jiménez-Jorge, S. de Mateo, C. Delgado-Sanz, et al., Effectiveness of influenza vaccine against laboratory-confirmed influenza, in the late 2011-2012 season in Spain, among the population targeted for vaccination, BMC Infect. Dis., 13 (2013), 441.
  • 62. J. C. Kwong, H. Ge, L. C. Rosella, et al., School-based influenza vaccine delivery, vaccination rates, and healthcare use in the context of a universal influenza immunization program: An ecological study, Vaccine, 28 (2010), 2722–2729.
  • 63. J. C. Kwong, T. A. Stukel, J. Lim, et al., The effect of universal influenza immunization on mortality and health care use, PLOS Med., 5 (2008), 1440–1452.
  • 64. K. Moran, S. Maaten, A. Guttmann, et al., Influenza vaccination rates in ontario children: Implications for universal childhood vaccination policy, Vaccine, 27 (2009), 2350–2355.
  • 65. A. S. S. Rao, M. H. Chen, P. Ba'Z, et al., Cohort effects in dynamic models and their impact on vaccination programmes: an example from hepatitis a, BMC Infect. Dis., 6 (2006), 174.
  • 66. J. Shaman, C. Jeon, E. Giovannucci, et al., Shortcomings of vitamin d-based model simulations of seasonal influenza, PLOS One, 6 (2011), e20743.
  • 67. J. Tamerius, C. Viboud, J. Shaman, et al., Impact of school cycles and environmental forcing on the timing of pandemic influenza activity in mexican states, may-december 2009, PLOS Comput. Biol., 11 (2015), e1004337.
  • 68. D. He, J. Dushoff, T. Day, et al., Mechanistic modelling of the three waves of the 1918 influenza pandemic, Theor. Ecol., 4 (2011), 283–288.


Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved