Research article

Export file:

Format

• RIS(for EndNote,Reference Manager,ProCite)
• BibTex
• Text

Content

• Citation Only
• Citation and Abstract

Modeling the effect of antibiotic exposure on the transmission of methicillin-resistant Staphylococcus aureus in hospitals with environmental contamination

1 Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, Cleveland, OH 44106-7058, USA
2 Department of Mathematics, University of Miami, Coral Gables, FL 33146, USA

## Abstract    Full Text(HTML)    Figure/Table    Related pages

In this paper both deterministic and stochastic models are developed to explore the roles that antibiotic exposure and environmental contamination play in the spread of antibiotic-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), in hospitals. Uncolonized patients without or with antibiotic exposure, colonized patients without or with antibiotic exposure, uncontaminated or contaminated healthcare workers, and free-living bacteria are included in the models. Under the assumption that there is no admission of the colonized patients, the basic reproduction number R0 is calculated. It is shown that when R0 < 1, the infection-free equilibrium is globally asymptotically stable; when R0 > 1, the infection is uniformly persistent. Numerical simulations and sensitivity analysis show that environmental cleaning is a critical intervention, and hospitals should use antibiotics properly and as little as possible. The rapid and efficient treatment of colonized patients, especially those with antibiotic exposure, is key in controlling MRSA infections. Screening and isolating colonized patients at admission, and improving compliance with hand hygiene are also important control strategies.
Figure/Table
Supplementary
Article Metrics

Citation: Qimin Huang, Mary Ann Horn, Shigui Ruan. Modeling the effect of antibiotic exposure on the transmission of methicillin-resistant Staphylococcus aureus in hospitals with environmental contamination. Mathematical Biosciences and Engineering, 2019, 16(5): 3641-3673. doi: 10.3934/mbe.2019181

References

• 1. Center for Disease Control and Prevention (CDC), Antibiotic / Antimicrobial Resistance (AR / AMR), 2018. Available from: https://www.cdc.gov/drugresistance/index.html.
• 2. World Health Organization (WHO), Antimicrobial Resistance - Global Report on Surveillance 2014, WHO, 2014.
• 3. S. J. Dancer, How antibiotics can make us sick: the less obvious adverse effects of antimicrobial chemotherapy, Lancet Infect. Dis., 4 (2004), 611–619.
• 4. E. Tacconelli, Antimicrobial use: risk driver of multidrug resistant microorganisms in healthcare settings, Curr. Opin. Infect. Dis., 22 (2009), 352–358.
• 5. E. Tacconelli, G. De Angelis, M. A. Cataldo, et al., Does antibiotic exposure increase the risk of methicillin-resistant Staphylococcus aureus (MRSA) isolation? a systematic review and meta- analysis, J. Antimicrob. Chemother., 61 (2007), 26–38.
• 6. J. M. Boyce, G. Potter-Bynoe, C. Chenevert, et al., Environmental contamination due to methicillin-resistant Staphylococcus aureus possible infection control implications, Infect. Control Hosp. Epidemiol., 18 (1997), 622–627.
• 7. S. J. Dancer, Importance of the environment in methicillin-resistant Staphylococcus aureus acquisition: the case for hospital cleaning, Lancet Infect. Dis., 8 (2008), 101–113.
• 8. D. J. Austin and R. M. Anderson, Studies of antibiotic resistance within the patient, hospitals and the community using simple mathematical models, Philos. Trans. R. Soc. Lond. B: Biol. Sci., 354 (1999), 721–738.
• 9. D. J. Austin, M. Kakehashi and R. M. Anderson, The transmission dynamics of antibiotic-resistant bacteria: the relationship between resistance in commensal organisms and antibiotic consumption, Philos. Trans. R. Soc. Lond. B: Biol. Sci., 264 (1997), 1629–1638.
• 10. C. T. Bergstrom, M. Lo and M. Lipsitch, Ecological theory suggests that antimicrobial cycling will not reduce antimicrobial resistance in hospitals, Proc. Natl. Acad. Sci. USA, 101 (2004), 13285–13290.
• 11. S. Bonhoeffer, M. Liptsitch and B. R. Levin, Evaluating treatment protocols to prevent antibiotic resistance, Proc. Natl. Acad. Sci. USA, 94 (1997), 12106–12111.
• 12. M. C. J. Bootsma, O. Diekmann and M. J. M. Bonten, Controlling methicillin-resistant Staphylococcus aureus: quantifying the effects of interventions and rapid diagnostic testing, Proc. Natl. Acad. Sci. USA, 103 (2006), 5620–5625.
• 13. C. Browne, M. Wang and G. F. Webb, A stochastic model of nosocomial epidemics in hospital intensive care units, Electron. J. Qual. Theory Differ. Equ., 6 (2017), 1–12.
• 14. C. Browne and G. F. Webb, A nosocomial epidemic model with infection of patients due to contaminated rooms, Discrete Contin. Dynam. Syst. Ser. B, 12 (2015), 761–787.
• 15. F. Chamchod and S. Ruan, Modeling methicillin-resistant Staphylococcus aureus in hospitals: transmission dynamics, antibiotic usage and its history, Theor. Biol. Med. Model., 9 (2012), 25.
• 16. B. S. Cooper, G. F. Medley, S. P. Stone, et al., Methicillin-resistant Staphylococcus aureus in hospitals and the community: stealth dynamics and control catastrophes, Proc. Natl. Acad. Sci. USA, 101 (2004), 10223–10228.
• 17. E. M. C. D'Agata, M. A. Horn, S. Ruan, et al., Efficacy of infection control interventions in reducing the spread of multidrug-resistant organisms in the hospital setting, PLoS ONE, 7 (2012), e30170.
• 18. E. M. C. D'Agata, P. Magal, D. Olivier, et al., Modeling antibiotic resistance in hospitals: the impact of minimizing treatment duration, J. Theor. Biol., 249 (2007), 487–499.
• 19. I. M. Hall, I. Barrass, S. Leach, et al., Transmission dynamics of methicillin-resistant Staphylococcus aureus in a medical intensive care unit, J. Royal Soc. Interface, 9 (2012), 2639– 2652.
• 20. Q. Huang, X, Huo, D. Miller, et al., Modeling the seasonality of methicillin-resistant Staphylococcus aureus infections in hospitals with environmental contamination, J. Biol. Dynam., (2018), 1–24.
• 21. Q. Huang, X, Huo and S. Ruan, Optimal control of environmental cleaning and antibiotic prescription in an epidemiological model of methicillin-resistant Staphylococcus aureus infections in hospitals, Math. Biosci., 311 (2019), 13–30.
• 22. M. Lipsitch, C. T. Bergstrom and B. R. Levin, The epidemiology of antibiotic resistance in hospitals: paradoxes and prescriptions, Proc. Natl. Acad. Sci. USA, 97 (2000), 1938–1943.
• 23. D. L. Smith, J. Dushoff, E. N. Perencevich, et al., Persistent colonization and the spread of antibiotic resistance in nosocomial pathogens: resistance is a regional problem, Proc. Natl. Acad. Sci. USA, 101 (2004), 3709–3714.
• 24. J. Wang, L. Wang, P. Magal, et al., Modelling the transmission dynamics of Meticillin-resistant Staphylococcus aureus in Beijing Tongren Hospital, J. Hosp. Infect., 79 (2011), 302–308.
• 25. L. Wang and S. Ruan, Modeling nosocomial infections of methicillin-resistant Staphylococcus aureus with environment contamination, Sci. Rep., 7 (2017), 580.
• 26. X.Wang, Y.Xiao, J.Wang, etal., Amathematicalmodelofeffectsofenvironmentalcontamination and presence of volunteers on hospital infections in China, J. Theor. Biol., 293 (2012), 161–173.
• 27. X. Wang, Y. Xiao, J. Wang, et al., Stochastic disease dynamics of a hospital infection model, Math. Biosci., 241 (2013), 115–124.
• 28. G. F. Webb, Individual based models and differential equations models of nosocomial epidemics in hospital intensive care units, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1145–1166.
• 29. G. F. Webb, E. M. C. D'Agata, P. Magal, et al., A model of antibiotic resistant bacterial epidemics in hospitals, Proc. Natl. Acad. Sci. USA, 102 (2005), 13343–13348.
• 30. M. J. M. Bonten, D. J. Austin and M. Lipsitch, Understanding the spread of antibiotic resistant pathogens in hospitals: mathematical models as tools for control, Clinic Infect. Dis., 33 (2001), 1739–1746.
• 31. H. Grundmann and B. Hellriegel, Mathematical modelling: a tool for hospital infection control, Lancet Infect. Dis., 6 (2006), 39–45.
• 32. L. Temime, G. Hejblum, M. Setbon, et al., The rising impact of mathematical modeling in epidemiology: antibiotic resistance research as a case study, Epidemiol. Infect., 136 (2008), 289–298.
• 33. E. van Kleef, J. V Robotham, M. Jit, et al., Modelling the transmission of healthcare associated infections: a systematic review, BMC Infect. Dis., 13 (2013), 294.
• 34. E. M. C. D'Agata, G. F. Webb and M. A. Horn, A mathematical model quantifying the impact of antibiotic exposure and other interventions on the endemic prevalence of Vancomycin-resistant Enterococci, J. Infect. Disease., 192 (2005), 2004–2011.
• 35. E. S. McBryde and D. L. S. McElwain, A mathematical model investigating the impact of an environmental reservoir on the prevalence and control of Vancomycin-resistant enterococci, J. Infect. Dis., 193 (2006), 1473–1474.
• 36. N. Plipat, I. H. Spicknall, J. S. Koopman, et al., The dynamics of methicillin-resistant Staphylococcus aureus exposure in a hospital model and the potential for environmental intervention, BMC Infect. Dis., 13 (2013): 595.
• 37. M. Wolkewitz, M. Dettenkofer, H. Bertz, et al., Environmental contamination as an important route for the transmission of the hospital pathogen VRE: modeling and prediction of classical interventions, Infect. Dis.: Res. Treat., 1 (2008), 3–11.
• 38. N.Patel, L.A.McNuttandT.P.Lodise, Relationshipbetweenvariousdefinitionsofpriorantibiotic exposure and Piperacillin-tazobactam resistance among patients with respiratory tract infections caused by Pseudomonas aeruginosa, Antimicrob. Agents Chemother., 52 (2008), 2933–2936.
• 39. T. N. Doan, D. C. M. Kong, C. Marshall, et al., Modeling the impact of interventions against Acinetobacter baumannii transmission in intensive care units, Virulence, 7 (2016), 141–152.
• 40. J. T. Fishbain, J. C. Lee, H. D. Nguyen, et al., Nosocomial transmission of methicillin-resistant Staphylococcus aureus: a blinded study to establish baseline acquisition rates, Infect. Control Hosp. Epidemiol., 24 (2003), 415–421.
• 41. R. E. Polk, C. Fox, A. Mahoney, et al., Measurement of adult antibacterial drug use in 130 US hospitals: comparison of defined daily dose and days of therapy, Clin. Infect. Dis., 44 (2007), 664–670.
• 42. L. J. S. Allen, A primer on stochastic epidemic models: formulation, numerical simulation, and analysis, Infect. Dis. Model., 2 (2017), 128–142.
• 43. L. J. S. Allen, An Introduction to Stochastic Processes with Applications to Biology, 2nd edition, CRC Press, Boca Raton, FL, 2010.!!!!!!!!!!!
• 44. O. Diekmann, J. A. P. Heesterbeek and M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, J. Royal Soc. Interface, 7 (2010), 873–885.
• 45. P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48.
• 46. W. Wang and X.-Q. Zhao, An epidemic model in a patchy environment, Math. Biosci., 190 (2004), 97–112.
• 47. X.-Q. Zhao, Dynamical Systems in Population Biology, Springer, New York, 2003.
• 48. A. Bogusz, M. Stewart, J. Hunter, et al., How quickly do hospital surfaces become contaminated after detergent cleaning? Healthcare Infect., 18 (2013), 3–9.
• 49. S. Marino, I. B. Hogue, C. J. Ray, et al., A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254 (2008), 178–196.
• 50. A. Saltelli, K. Chan and E. M. Scott, Sensitivity Analysis, Willey, New York, 2000.
• 51. M. L. Forrester, A. N. Pettitt and G. J. Gibson, Bayesian inference of hospital-acquired infectious diseases and control measures given imperfect surveillance data, Biostatistics, 8 (2007), 383–401.
• 52. S. Pei, F. Morone, F. Liljeros, H. Makse, et al., Inference and control of the nosocomial transmission of methicillin-resistant Staphylococcus aureus, eLIFE, 7 (2018): e40977.
• 53. A. Thomas, K. Khader, A. Redd, et al., Extended models for nosocomial infection: parameter estimation and model selection, Math. Med. Biol., 35 (2018), i29–i49.
• 54. C. M. Macal, M. J. North, N. Collier, et al., Modeling the transmission of community-associated methicillin-resistant Staphylococcus aureus: a dynamic agent-based simulation, J. Transl. Med., 12 (2014), 124.
• 55. R. Assab, N. Nekkab, P. Crepey, et al., Mathematical models of infection transmission in healthcare settings: recent advances from the use of network structured data, Curr. Opin. Infect. Dis., 30 (2017), 410–418.
• 56. L. Sun, E. Y. Klein and R. Laxminarayan, Seasonality and temporal correlation between community antibiotic use and resistance in the United States, Clin. Infect. Dis., 55 (2012), 687–694.
• 57. X. Wang, S. Panchanathan and G. Chowell, A data-driven mathematical model of CA-MRSA transmission among age groups: evaluating the effect of control interventions, PLOS Comput. Biol., 9 (2013), e1003328.