
Mathematical Biosciences and Engineering, 2019, 16(5): 33113330. doi: 10.3934/mbe.2019165
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
A negative correlation ensemble transfer learning method for fault diagnosis based on convolutional neural network
1 The State Key Laboratory of Digital Manufacturing Equipment & Technology, School of Mechanical Science & Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China
2 School of Electronic Information & Communications, Huazhong University of Science & Technology, Wuhan, 430074, China
3 Department of Pathology, Longgang Central Hospital of Shenzhen City, Guangdong, 518116, China
Received: , Accepted: , Published:
Special Issues: Optimization methods in Intelligent Manufacturing
References
1. L. Wen, Y. Dong and L. Gao, A new ensemble residual convolutionalneural network for remaining useful life estimation, Math. Biosci. Eng., 16 (2019), 862–880.
2. H. D. Shao, H. K. Jiang, X. Zhang, et al., Rolling bearing fault diagnosis using an optimization deepbelief network, Meas. Sci. Tech., 26 (2015), 115002.
3. R. Zhao, R. Yan, Z. Chen, et al., Deep learning and itsapplications to machine health monitoring: A survey. arXiv preprint arXiv:1612.07640, 2016.
4. M. Cerrada, R. V. Sánchez, C. Li, et al., A review on datadriven fault severityassessment in rolling bearings, Mech. Syst. Signal Proc., 99 (2018), 169–196.
5. Y. Bengio, A. Courville and P. Vincent, Representation learning: a review and new perspectives, IEEE T. Pattern Anal. Mach. Intell., 35 (2013), 1798–1828.
6. L. Wen, L. Gao and X. Y. Li, A new deep transfer learning based on sparseautoencoder for fault diagnosis, IEEE T.Syst. Man Cybern. Syst., 49 (2019), 136–144.
7. J. L. Wang, J. Zhang and X. X. Wang, A data driven cycle time prediction with featureselection in a semiconductor wafer fabrication system, IEEE T. Semicond. Manuf., 31 (2018), 173–182.
8. S. Shao, S. McAleer, R. Yan, et al., Highlyaccuratemachine fault diagnosis using deep transfer learning, IEEE T. Ind. Inform., 15 (2019), 2446–2455.
9. Z. Y. Wang, C. Lu and B. Zhou, Fault diagnosis for rotary machinery with selectiveensemble neural networks, Mech. Syst.Signal Proc., 113 (2018), 112–130.
10. D. H. Wolpert and W. G.Macready, No free lunch theorems for optimization, IEEE T. Evol. Comput., 1 (1997), 67–82.
11. H. Y. Sang, Q. K. Pan, J. Q. Li, et al., Effectiveinvasive weed optimization algorithms for distributed assembly permutationflowshop problem with total flowtime criterion, Swarm Evol. Comput., 44 (2019), 64–73.
12. X. Y. Li, C. Lu, L. Gao, et al., An Effective MultiObjective Algorithm forEnergy Efficient Scheduling in a RealLife Welding Shop, IEEE T. Ind. Inform., 14 (2018), 5400–5409.
13. J. Yosinski, J. Clune, Y. Bengio, et al., How transferable arefeatures in deep neural networks? In Advances in neural information processingsystems, (2014), 3320–3328.
14. L. Wen, X. Y. Li and L. Gao, A New Twolevel Hierarchical Diagnosis Network based onConvolutional Neural Network, IEEE T.Instrum. Meas., (2019).
15. H. Y. Sang, Q. K. Pan, P. Y. Duan, et al., Aneffective discrete invasive weed optimization algorithm for lotstreamingflowshop scheduling problems. J. Intell.Manuf., 29 (2018), 1337–1349.
16. X.Y. Li, L. Gao, Q. Pan, et al., An effectivehybrid genetic algorithm and variable neighborhood search for integratedprocess planning and scheduling in a packaging machine workshop. IEEE Trans. Syst. Man Cybern. Syst., (2018).
17. K. Tidriri, N. Chatti, S. Verron, et al., Bridging datadriven andmodelbased approaches for process fault diagnosis and health monitoring: Areview of researches and future challenges, Annu.Rev. Control, 42 (2016), 63–81.
18. Z. Y. Yin and J. Hou, Recent advances on SVMbased fault diagnosis and process monitoring in complicated industrialprocesses, Neurocomputing, 174 (2016), 643–650.
19. J. Zheng, L. Gao, H. B. Qiu, et al., Difference mapping methodusing least square support vector regression for variablefidelityapproximation modelling, Eng. Optimiz., 47 (2015), 719–736.
20. T. Han, D. Jiang, Q. Zhao, et al., Comparison of random forest,artificial neural networks and support vector machine for intelligent diagnosisof rotating machinery, Trans. Inst. Meas.Control, (2017), 1–13.
21. B. Cai, L. Huang and M. Xie, Bayesian networks in fault diagnosis, IEEE T. Ind. Inform., 13 (2017), 2227–2240.
22. L. Wen, L. Gao and X. Y. Li, A new snapshot ensemble convolutional neuralnetwork for fault diagnosis, IEEE Access, 7 (2019), 32037–32047.
23. F. Wang, H. K. Jiang, H. D. Shao, et al., An adaptive deepconvolutional neural network for rolling bearing fault diagnosis, Meas. Sci. Technol., 28 (2017), 9.
24. J. L. Wang, J. Zhang and X. X. Wang, Bilateral LSTM: Atwodimensional long shortterm memory model with multiply memory units forshortterm cycle time forecasting in reentrant manufacturing systems. IEEE T. Ind. Inform., 14 (2018), 748–758.
25. J. Pan, Y. Zi, J. Chen, et al., LiftingNet: A novel deep learningnetwork with layerwise feature learning from noisy mechanical data for faultclassification, IEEE T. Ind. Inform., 65 (2018), 4973–4982.
26. S. B. Li, G. K. Liu, X. H. Tang, et al., An ensemble deepconvolutional neural network model with improved ds evidence fusion for bearingfault diagnosis, Sensors, 17 (2017), 1729.
27. C. Lu, Z. Y. Wang and B. Zhou, Intelligent fault diagnosis of rolling bearing using hierarchicalconvolutional network based health state classification, Adv. Eng. Inform., 32 (2017), 139–151.
28. B. Zhang, W. Li, X. Li, et al., Intelligent fault diagnosis undervarying working conditions based on domain adaptive convolutional neural networks, IEEE Access, 6 (2018), 66367–66384.
29. J. Donahue, Y. Q. Jia, O, Vinyals, et al., Decaf: A deepconvolutional activation feature for generic visual recognition, Internationalconference on machine learning, (2014),647–655.
30. R. Ren, T. Hung and K. C. Tan, A generic deeplearningbased approach for automatedsurface inspection, IEEE T. Cybern., 48 (2018), 929–940.
31. J. Wehrmann, G. S. Simoes and R. C. Barros, et al., Adultcontent detection in videos with convolutional and recurrent neural networks, Neurocomputing, 272 (2017), 432–438.
32. H. C. Shin, H. R. Roth, M. C. Gao, et al., Deep convolutionalneural networks for computeraided detection: CNN architectures, datasetcharacteristics and transfer learning, IEEET. Med. Imaging, 35 (2016), 1285–1298.
33. E. Rezende, G. Ruppert, T. Carvalho, et al., Malicious softwareclassification using transfer learning of ResNet50 deep neural network, 201716th IEEE International Conference on Machine Learning and Applications (ICMLA), (2017), 1011–1014.
34. O. Janssens, R. Walle, M. Loccufier, et al., Deep learning forinfrared thermal image based machine health monitoring. IEEEASME Trans. Mechatron., 23 (2018), 151–159.
35. Y. Zhou, W. C. Yi, L. Gao, et al., Adaptive differential evolution with sortingcrossover rate for continuous optimization problems. IEEE T. Cybern., 47 (2017), 2742–2753.
36. H. Y. Sang, P. Y. Duan and J. Q. Li, An effective invasive weed optimization algorithm forscheduling semiconductor final testing problem. Swarm Evol. Comput., 38 (2018), 42–53.
37. L. K. Hansen and P. Salamon, Neural network ensembles, IEEE T. Pattern Anal. Mach. Intell., 12 (1999), 993–1001.
38. H. H. Chen and X. Yao, Regularized negative correlation learning for neuralnetwork ensembles, IEEE T. Neural Netw., 20 (2009), 1962–1979.
39. J. C. Fernández, M. CruzRamírez and C. HervásMartínez, Sensitivityversus accuracy in ensemble models of artificial neural networks frommultiobjective evolutionary algorithms. NeuralComput. Appl., 30 (2018), 289–305.
40. C. Hu, B. D. Youn, P. Wang, et al., Ensemble of datadrivenprognostic algorithms for robust prediction of remaining useful life, Reliab. Eng. Syst. Saf., 1 (2012), 120–35.
41. Z. Wu, W. Lin and Y. Ji, An integrated ensemble learning model for imbalanced faultdiagnostics and prognostics. IEEE Access, 6 (2018), 8394–8402.
42. U. P. Chong, Signal modelbased fault detection and diagnosis forinduction motors using features of vibration signal in twodimension domain. Strojniski Vestn. J. Mech. Eng., 57 (2011), 655–666.
43. L. Wen, X. Y. Li, L. Gao, et al., A new convolutional neuralnetwork based datadriven fault diagnosis method, IEEE Trans. Ind. Electron., 65 (2018), 5990–5998.
44. K. M. He, X.Y. Zhang, S. Q. Ren, et al., Deep residuallearning for image recognition, IEEE Conference on Computer Vision and PatternRecognition, (2016),770–778.
45. K. M. He, X. Y. Zhang, S. Q. Ren, et al., Delving deep into rectifiers: Surpassing humanlevel performanceon ImageNet classification. IEEEInternational Conference on Computer Vision, (2015),1026–1034.
46. M. Xiao, L. Wen, X. Li, et al., Modelingof the feedmotor transient current in end milling by using varyingcoefficientmodel. Math. Probl. Eng., (2015).
47. S. Arlot and A. Celisse, A survey ofcrossvalidation procedures for model selection, Statistics surveys, 4 (2010), 40–79.
48. I. H. Witten, E. Frank, M. A. Hall, et al., Data Mining: Practical machinelearning tools and techniques. Morgan Kaufmann, (2016).
49. C. Lessmeier, J. K. Kimotho, D. Zimmer, et al., Conditionmonitoring of bearing damage in electromechanical drive systems by using motorcurrent signals of electric motors: A benchmark data set for datadrivenclassification. European Conference of the Prognostics and Health ManagementSociety, 0508, (2016).
50. T. Han, D. Jiang, Q. Zhao, et al., Comparison of random forest, artificial neural networks andsupport vector machine for intelligent diagnosis of rotating machinery. Trans. Inst. Meas. Control, (2017), 1–13.
51. Y. H. Chen, G. L. Peng, C. H. Xie, et al., ACDIN: Bridging the gapbetween artificial and real bearing damages for bearing fault diagnosis, Neurocomputing, 294 (2018), 61–71.
52. Z. Y. Zhu, G. L. Peng, Y. H. Chen, et al., A convolutional neuralnetwork based on a capsule network with strong generalization for bearing faultdiagnosis, Neurocomputing, 323 (2019), 62–75.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)