
Mathematical Biosciences and Engineering, 2019, 16(4): 31953214. doi: 10.3934/mbe.2019159
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Biological view of vaccination described by mathematical modellings: from rubella to dengue vaccines
1 Department de Matemática Aplicada, Universidade Estadual de Campinas, Campinas, SP, Brazil
2 Department of epidemiology, Faculty of Medicina São Leopoldo Mandic, Campinas, SP, Brazil
Received: , Accepted: , Published:
Special Issues: Mathematical Methods in the Biosciences
References
1. S. A. Plotkin, The history of rubella and rubella vaccination leading to elimination, Clin. Infect. Dis., 43 (2006), S164–168.
2. G. Mandell, J. Bennett and R. Dolin, Mandell, Douglas and Bennett's Principles and Practices of Infectious Diseases, 6th edition, Elsevier Inc., Philadelphia, 2005.
3. G. Strickland, Hunter's Tropical Medicine and Emerging Infectious Diseases, 8th edition, W.S. Saunders Co., Philadelphia, 2000.
4. E. Massad, R.S. Azevedo Neto, M.N. Burattini, et al., Assessing the efficacy of s mixed vaccination strategy against rubella In São Paulo, Brazil, Int. J. Epidemiol., 24 (1995), 842–850.
5. H. M. Yang, Modelling vaccination strategy against directly transmitted diseases using a series of pulses, J. Biol. Syst., 6 (1998), 187–212.
6. X. Song, Y. Jiang and H. Wei, Analysis of a saturation incidence SVEIRS epidemic model with pulse and two time delays, Appl. Math. Comput., 214 (2009), 381–390.
7. M. De la Sen, R. P. Agarwal, A. Ibeas, et al., On a generalized timevarying SEIR epidemic model with mixed point and Distributed TimeVarying Delays and Combined Regular and Impulsive vaccination controls, Adv. Differ. Equ., 2010 (2010), 281612.
8. M. De la Sen, R. P. Agarwal, R. Nistal1, et al., A switched multicontroller for an SEIADR epidemic model with monitored equilibrium points and supervised transients and vaccination costs, Adv. Differ. Equ., 2018 (2018), 390.
9. H. Yang, Epidemiologia Matemática: Estudo dos Efeitos da Vacina¸cão em Doen¸cas de Transmissão Direta, Edunicamp & Fapesp, Campinas, 2001.
10. L. Esteva and H. M. Yang, Assessing the effects of temperature and dengue virus load on dengue transmission, J. Biol. Syst., 23 (2015), 527–554.
11. J. Arino, M. Connell and P. Driessche, Global results for an epidemic model with vaccination that exhibits backward bifurcation, SIAM J. Appl. Math., 64 (2003), 260–276.
12. S. Chengjun and Y. Wei, Global results for an SIRS model with vaccination and isolation, Nonlinear Anal. Real World Appl., 11 (2010), 4223–4237.
13. J. Dushoff, W. Huang and C. CastilloChavez, Backwards bifurcations and catastrophe in simple models of fatal diseases, J. Math. Biol., 36 (1998), 227–248.
14. H. Jing and Z. Deming, Global stability and periodicity on SIS epidemic models with backward bifurcation, Comput. Math. Appl., 50 (2005), 1271–1290.
15. C. M. KribsZaleta and J. X. VelascoHernández, A simple vaccination model with multiple endemic states, Math. Biosci., 164 (2000), 183–201.
16. J. Li, Z. Ma and Y. Zhou, Global analysis of SIS epidemic model with a simple vaccination and multiple endemic equilibria, Acta Math. Sci., 26B (2006), 83–93.
17. M. A. Safi and A. B. Gumel, Mathematical analysis of a disease transmission model with quarantine, isolation and an imperfect vaccine, Comput. Mathe. Appl., 61 (2011), 3044–3070.
18. O. Sharomi, C. N. Podder, A. B. Gumel, et al., Role of incidence function in vaccineinduced backward bifurcation in some HIV models, Math. Biosci., 210 (2007), 436–463.
19. L. Freitas, Vacina¸cão de Doen¸cas Infecciosas de Transmissão Direta: Quantificando Condi¸cões de Controle Considerando Portadores, Ph.D thesis, State University at Campinas City (Brazil), 2018.
20. H. M. Yang, Modeling directly transmitted infections in a routinely vaccinated population – the force of infection described by Volterra integral equation, Appl. Math. Comput., 122 (2001), 27– 58.
21. H. M. Yang and S. M. Raimundo, Assessing the effects of multiple infections and long latency in the dynamics of tuberculosis, Theor. Biol. Med. Model., 7 (2010), 41.
22. R. Anderson and R. May, Infectious Diseases of Human: Dynamics and Control, Oxford University Press, Oxford, New York, Tokyo, 1991.
23. O. ZgorniakNowosielska, B. Zawillinska and S. Szostek, Rubella infection during pregnancy in the 198586 epidemic: followup after seven years, Eur. J. Epidemiol., 12 (1996), 303–308.
24. S.W. Bart, H. C. Steller, S. R. Preblud, et al., Fetal risk associated with rubella vaccine: an update, Rev. Infect. Dis., 7 (1985), S95–102.
25. C. CastilloSolórzano, S. E. Feef, M. Morice, et al., Rubella vaccination of unknowingly pregnant women during mass campaigns for rubella and congenital rubella syndrome elimination, the Americas 20012008, J. Infect. Dis., 204 (2011), S713–717.
26. E. Massad, M. N. Burattini, R. S. Azevedo Neto, et al., A modelbased design of a vaccination strategy against rubella in a nonimmunized community of São Paulo State, Brazil, Epidemiol. Infect., 112 (1994), 579–594.
27. H. M. Yang, Directly transmitted infections modeling considering agestructured contact rate, Math. Comput. Model., 29 (1999), 39–48.
28. H. M. Yang, Directly transmitted infections modeling considering agestructured contact rate – epidemiological analysis, Math. Comput. Model., 29 (1999), 11–30.
29. R. S. Azevedo Neto, A. S. B. Silveira, D. J. Nokes, et al., Rubella seroepidemiology in a nonimmunized population of São Paulo State, Brazil, Epidemiol. Infect., 113 (1994), 161–173.
30. X. Badilla, A. Morice, M. L. AvilaAguero, et al., Fetal risk associated with rubella vaccination during pregnancy, Pediatr. Infect. Dis. J., 26 (2007), 830–835.
31. A. M. Ergenoglu, A. O. Yeniel, N. Yildirim, et al., Rubella vaccination during the periconception period or in pregnancy and perinatal and fetal outcomes, Turk J. Pediatr., 54 (2012), 230–233.
32. B. J. Freij, M. A. South and J. L. Sever, Maternal rubella and the congenital rubella syndrome, Clin. Perinatol., 15 (1988), 247–257.
33. L. Minussi, R. Mohrdieck, M. Bercini, et al., Prospective evaluation of pregnant women vaccinated against rubella in southern Brazil, Reprod. Toxicol., 25 (2008), 120–123.
34. M. H. Namae, M. Ziaee and N. Nasseh, Congenital rubella syndrome in infants of women vaccinated during or just before pregnancy with measlesrubella vaccine, Indian J. Med. Res., 127 (2008), 551–554.
35. R. Nasiri, J. Yoseffi, M. Khaejedaloe, et al., Congenital rubella syndrome after rubella vaccination in 14 weeks periconceptional period, Indian J. Pediatr., 76 (2009), 279–282.
36. H. K. Sato, A. T. Sanajotta, J. C. Moraes, et al., Rubella vaccination of unknowingly pregnant women: the São Paulo experience, 2001, J. Infect. Dis., 204 (2011), S734–744.
37. G. R. da Silva e Sá, L. A. Camacho, M. S. Stavola, et al., Pregnancy outcomes following rubella vaccination: a prospective study in the state of Rio de Janeiro, Brazil, 20012002, J. Infect. Dis., 204 (2011), S722–728.
38. R. C. Soares, M. M. Siqueira, C. M. Toscano, et al., Followup study of unknowingly pregnant women vaccinated against rubella in Brazil, 20012002, J. Infect. Dis., 204 (2011), S729–736.
39. P. A. Tookey, G. Jones, B. H. Miller, et al., Rubella vaccination in pregnant, CDR (Lond. Engl. Rev.), 1 (1991), R86–88.
40. D. Gubler, Dengue and dengue hemorrhagic fever, Clin. Microb. Rev., 11 (1998), 480–496.
41. S. B. Halstead, S. Mahalingam, M. A. Marovich, et al., Intrinsic antibodydependent enhanced of microbial infection in macrophages: disease regulation by immune complexies, Lancet Infect. Dis., 10 (2010), 712–722.
42. D. M. Morens, Antibodydependent enhancement of infection and the pathogenesis of viral disease, Clin. Infect. Dis., 19 (1994), 500–512.
43. WHO, Immunization, vaccines and biologicals, 2017. Available from: http://www.who.int/ immunization/research/development/dengue_vaccines/en/.
44. L. Coudeville, N. Baurin and E. Vergu, Estimation of parameters related to vaccine efficacy and dengue transmission from two large phase III studies, Vaccine, 34 (2016), 6417–6425.
45. S. Gailhardou, A. Skipetrova, G. H. Dayan, et al., Safety overview of a recombinant liveattenuated tetravalent dengue vaccine: pooled analysis of data from 18 clinical trials, Plos NTD, 10 (2016), 1–25.
46. L. J. Scott, Tetravalent dengue vaccine: a review in the prevention of dengue disease, Drugs, 76 (2016), 1301–1312.
47. L. Villar, G. H. Dayan, J. L. ArredondoGarcia, et al., Efficacy of a tetravalent dengue vaccine in children in Latin America, N. Engl. J. Med., 372 (2015), 113–123.
48. S. B. Halstead and P. K. Russell, Protective and immunological behavior of chimeric yellow fever dengue vaccine, Vaccine, 34 (2016), 1643–1647.
49. S. R. S. Hadinegoro, J. L. ArredondoGarcia, B. Guy, et al., Answer to the review from Healstead and Russell "Protective and immunological behavior of chimeric yellow fever dengue vaccine", Vaccine, 34 (2016), 4273–4274.
50. Sanofi updates information on dengue vaccine, Nov. 29, 2017, Sanofi, 2017. Available from: http://mediaroom.sanofi.com/sanofiupdatesinformationondenguevaccine/.
51. Philippines gripped by dengue vaccine fears, Feb. 3, 2018, BBC, 2017. Available from: http: //www.bbc.com/news/worldasia42929255.
52. L. Billings, I. B. Schwartz, L. B. Shaw, et al., Instabilities in multiserotype disease model with antibodydependent enhancement, J. Theoret. Biol., 246 (2007), 18–27.
53. L. Esteva and C. Vargas, Coexistence of different serotypes of dengue virus, J. Math. Biol., 46 (2003), 31–47.
54. L. Coudeville and G. P. Garnett, Transmission dynamics of the four dengue serotypes in Southern Vietnam and the potential impact of vaccination, PlosOne, 7(12) (2012), e51244.
55. H. M. Yang, M. L. Macoris, K. C. Galvani, et al., Follow up estimation of Aedes aegypti entomological parameters and mathematical modellings, BioSystems, 103 (2011), 360–371.
56. H. M. Yang, M. L. Macoris, K. C. Galvani, et al., Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue, Epidemiol. Infect., 137 (2009), 1188–1202.
57. N. Chotiwan, B. G. Andre, I. SanchezVargas, et al., Dynamic remodeling of lipids coincides with dengue virus replication in the midgut of Aedes aegypti mosquitoes, PLOS Pathog., 14 (2018), e1006853.
58. H. M. Yang, J. L. Boldrini, A. C. Fassoni, et al., Fitting the incidence data from the City of Campinas, Brazil, based on dengue transmission modellings considering timedependent entomological parameters, PLOS One, 11 (2016), 1–41.
59. Vigilˆancia Sanitária, MG, Boletim epidemiológico de monitoramento dos casos de dengue, febre chikungunya e febre zika, Semana epidemiológica, 1 (2016), 01.
60. M. C. Gomez and H. M. Yang, A simple mathematical model to describe antibodydependent enhancement in heterologous secondary infection in dengue, Math. Med. Biol.: A Journ. IMA, (2016), DOI: 10.1093/imammb/dqy016.
61. WHO, Dengue vaccine: WHO position paper – July 2016, Weekly epidemiological record, 30 (2016), 349–364.
62. A. Ong, M. Sandar, M. I. Chen, et al., Fatal dengue hemorrhagic fever in adults during a dengue epidemic in Singapore, Int. J. Infect. Disease., 11 (2007), 263–267.
63. H. M. Yang and C. P. Ferreira, Assessing the effects of vector control on dengue transmission, Appl. Math. Comput., 198 (2008), 401–413.
64. H. M. Yang, The basic reproduction number obtained from Jacobian and next generation matrices – A case study of dengue transmission modelling, BioSystems, 126 (2014), 52–75.
65. H. M. Yang and D. Greenhalgh, Proof of conjecture in: The basic reproduction number obtained from Jacobian and next generation matrices – A case study of dengue transmission modelling, Appl. Math. Comput., 265 (2015), 103–107.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)