Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Global dynamics of a multi-stage brucellosis model with distributed delays and indirect transmission

Department of Mathematics, North University of China, Taiyuan, Shanxi 030051, China

Special Issues: Transmission dynamics in infectious diseases

The mechanisms of brucellosis transmission are diverse and complex, especially the role of young animals in the spread of brucellosis has not been well studied. In this article, a new deterministic system that incorporates various stages of susceptible individuals and time delay of infection is proposed. Under general biological assumptions, the qualitative properties and stability of the system are studied, the results illustrate that the global dynamics of equilibrium points depend on the basic reproduction number $R_0$: If $R_0\leq 1$, animal brucellosis will eventually die out; and if $R_0> 1$, animal brucellosis is persistent and eventually tends to the endemic steady state. These results suggest that distributed time delay is harmless for the dynamics of the spread of brucellosis when $R_0$ is greater than one or less than or equal to one. Finally, periodic phenomena are found by numerical analysis if the assumptions are not true.
  Article Metrics

Keywords brucellosis; multi-stage model; indirect transmission; global stability; Lyapunov functional

Citation: Qiang Hou, Haiyan Qin. Global dynamics of a multi-stage brucellosis model with distributed delays and indirect transmission. Mathematical Biosciences and Engineering, 2019, 16(4): 3111-3129. doi: 10.3934/mbe.2019154


  • 1. M. Madsen and E.C. Anderson, Serologic survey of Zimbabwean wildlife for brucellosis, J. Zoo Wildlife Med., 26 (1995), 240–245.
  • 2. M.E. Meyer and M. Meagher, Brucellosis in freeranging bison (Bison bison) in Yellowstone, Grand Teton, and Wood Bu alo National Parks: A review, J. Wildlife Dis., 31 (1995), 579–598.
  • 3. M. Mustafa and P. Nicoletti, Proceedings of the Workshop on Guidelines for a Regional Brucellosis Control Program for the Middle East 14-17 February, Amman, Jordan, FAO, WHO and OIE, 1993.
  • 4. M. Darwish and A. Benkirane, Field investigations of brucellosis in cattle and small ruminants in Syria, 1990–1996, Rev. Sci. Tech. OIE, 20(3) (2001), 769–775.
  • 5. J.R. Ebright, T. Altantsetseg and R. Oyungerel, Emerging infectious diseases in Mongolia, Emerg. Infect. Dis., 9(12) (2003), 1509–1515.
  • 6. G. Pappas, P. Papadimitriou, N. Akritidis, et al., The new global map of human brucellosis, Lancet Infect. Dis., 6 (2006), 91–99.
  • 7. M. Corbel, Brucellosis: An overview, Emerg. Infect. Dis., 3 (1997), 213–221.
  • 8. J. McDermott, D. Grace and J. Zinsstag, Economics of brucellosis impact and control in lowincome countries, Rev. Sci. Tech., 32 (2013), 249–261.
  • 9. M.J. Corbel, Brucellosis in humans and animals, WHO, FAO and OIE, 2006.
  • 10. J. Parnas, W. Krüger and E. Tüppich, Die Brucellose des Menschen (Human Brucellosis), VEB VErlag Volk und Gesundheit, Berlin, 1966.
  • 11. H. Krauss, A. Weber, B. Enders, et al., Zoonotic diseases, infection diseases transmitted from animals to human (Zoonosen, von Tier auf den Menschen übertragbare Infek-tionskrankheiten), Deutscher Ärzte-Verlag Köln, Cologne, 1996.
  • 12. SCAHAW, Brucellosis in sheep and goats, Scientific Committee on Animal Health and Animal Welfare, 2001.
  • 13. E.D. Ebel, M.S. Williams and S.M. Tomlinson, Estimating herd prevalence of bovine brucellosis in 46 U.S.A. states using slaughter surveillance, Prev. Vet. Med., 85 (2008), 295–316.
  • 14. H.S. Lee, M. Her, M. Levine, et al. Time series analysis of human and bovine brucellosis in South Korea from 2005 to 2010, Prev. Vet. Med., 110 (2013), 190–197.
  • 15. R.D. Jones, L. Kelly, T. England, et al., A quantitative risk assessment for the importation of brucellosis-infected breeding cattle into Great Britain from selected European countries, Prev. Vet. Med., 63 (2004), 51–61.
  • 16. A.M. Al-Majali and M. Shorman, Childhood brucellosis in Jordan: Prevalence and analysis of risk factors, Int. J. Infect. Dis., 13 (2009), 196–200.
  • 17. P. Jia and A. Joyner, Human brucellosis occurrences in inner mongolia, China: A spatio-temporal distribution and ecological niche modeling approach, BMC Infect. Dis., 13(36) (2015).
  • 18. J. González-Guzmán and R. Naulin, Analysis of a model of bovine brucellosis using singular perturbations, J. Math. Biol., 33 (1994), 211–234.
  • 19. J.Zinsstag, F. Roth, D. Orkhon, et al., A model of animal-human brucellosis transmission in Mongolia, Prev. Vet. Med., 69 (2005), 77–95.
  • 20. D. Andrew and M. Mary, The Population Dynamics of Brucellosis in the Yellowstone National Park, Ecology, 77(4) (1996), 1026–1036.
  • 21. F. Xie and R.D. Horan, Disease and Behavioral Dynamics for Brucellosis Control in Elk and Cattle in the Greater Yellowstone Area, J. Agr. Resour. Econ., 34 (2009), 11–33.
  • 22. D. Shabb, N. Chitnis, Z. Baljinnyam, et al., A mathematical model of the dynamics of Mongolian livestock populations, Livest. Sci., 157 (2013), 280–288.
  • 23. B. AÏnseba, C. Benosman and P. Magal, A model for ovine brucellosis incorporating direct and indirect transmission, J. Biol. Dyn., 4(1) (2010), 2–11.
  • 24. M.T. Li, G.Q. Sun, J. Zhang, et al., Transmission dynamics and control for a brucellosis model In Hinggan League of Inner Mongolia, China, Math. Biosci. Eng., 11 (2014), 1115–1137.
  • 25. Q. Hou, X.D Sun, J. Zhang, et al., Modeling the Transmission Dynamics of Sheep Brucellosis in Inner Mongolia Autonomous Region, China, Math. Biosci., 242 (2013), 51–58.
  • 26. Q. Hou, X.D. Sun, Y.M. Wang, et al., Global properties of a general dynamic model for animal diseases: A case study of brucellosis and tuberculosis transmission, J. Math. Anal. Appl., 414(1) (2014), 424–433.
  • 27. P.O. Lolika, C. Modnak and S. Mushayabasa, On the dynamics of brucellosis infection in bison population with vertical transmission and culling, Math. Biosci., 305 (2018), 42–54.
  • 28. W.M. Liu, S.A. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 23 (1986), 187–204.
  • 29. H. McCallum, N. Barlow and J. Hone, How should pathogen transmission be modelled ?, Trends Ecol. Evol., 16(6) (2001), 295–300.
  • 30. R. Breban, J.M Drake, D.E. Stallknecht, et al., The role of environmental transmission in recurrent avian influenza epidemics, PLoS Comput. Biol., 5(4) (2009), e1000346.
  • 31. Z. Mukandavire, S. Liao, J. Wang, et al., Estimating the reproductive numbers for the 2008–2009 cholera outbreaks in Zimbabwe, Proc. Natl. Acad. Sci. USA, 108 (2011), 8767–8772.
  • 32. H.B. Guo, M.Y. Li and Z.S. Shuai, Global dynamics of a general class of multistage models for infectious diseases, SIAM J. Appl. Math., 72(1) (2012), 261–279. 33. J.P. LaSalle, Stability of Dynamical Systems, SIAM, Philadelphia, 1976.
  • 34. J.K. Hale and P. Waltman, Persistence in infinite-dimensional systems, SIAM J. Math. Anal., 20 (1989), 388–395.
  • 35. Y. Yang, L. Zou and S. Ruan, Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions, Math. Biosci., 270 (2015), 183–191.
  • 36. O.P. Lolika and S. Mushayabasa, Dynamics and stability analysis of a brucellosis model with two discrete delays, Discrete Dyn. Nat. Soc., 2 (2018), 1–20.


Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved