
Mathematical Biosciences and Engineering, 2019, 16(4): 30943110. doi: 10.3934/mbe.2019153.
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
A diffusive SIS epidemic model in a heterogeneous and periodically evolvingenvironment
1 School of Mathematical Science, Yangzhou University, Yangzhou 225002, China
2 School of Mathematics and Statistics, Hexi University, Zhangye 734000, China
Received: , Accepted: , Published:
Special Issues: Spatial dynamics for epidemic models with dispersal of organisms and heterogenity of environment
Keywords: diffusive SIS model; basic reproduction number; heterogeneous environment; evolving domain; stability
Citation: Liqiong Pu, Zhigui Lin. A diffusive SIS epidemic model in a heterogeneous and periodically evolvingenvironment. Mathematical Biosciences and Engineering, 2019, 16(4): 30943110. doi: 10.3934/mbe.2019153
References:
 1. L. J. S. Allen, B. M. Bolker, Y. Lou, et al., Asymptotic profiles of the steady states for an SIS epidemic reactiondiffusion model, Discrete Contin. Dyn. Syst. Ser. A, 21 (2008), 1–20.
 2. E. J. Crampin, Reaction Diffusion Patterns on Growing Domains, PhD thesis, University of Oxford, 2000.
 3. E. J. Crampin, E. A. Gaffney and P. K. Maini, Reaction and diffusion on growing domains: scenarios for robust pattern formation, Bull. Math. Biol., 61 (1999), 1093–1120. 222
 4. E. J. Crampin, E. A. Gaffney and P. K. Maini Modedoubling and tripling in reactiondiffusion patterns on growing domains: a piecewise linear model, J. Math. Biol., 44 (2002), 107–128.
 5. E. J. Crampin, W. W. Hackborn and P. K. Maini, Pattern formation in reaction diffusion models with nonuniform domain growth, Bull. Math. Biol., 64 (2002), 747–769.
 6. E. J. Crampin and P. K. Maini, Modelling biological pattern formation: the role of domain growth, Comm. Theor. Biol., 6 (2001), 229–249.
 7. P. van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48.
 8. Y. Du and Z. Lin, Spreadingvanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377405.
 9. J. Ge, K. I. Kim, Z. G. Lin, et al., A SIS reactiondiffusionadvection model in a lowrisk and highrisk domain, J. Differential Equations, 259 (2015), 54865509.
 10. H. Gu, Z. Lin and B. Lou, Different asymptotic spreading speeds induced by advection in a diffusion problem with free boundaries, Proc. Amer. Math. Soc., 143 (2015), 1109–1117.
 11. S. B. Hsu and Y. Lou, Single phytoplankton species growth with light and advection in a water column, SIAM J. Appl. Math., 70 (2010), 2942–2974.
 12. W. Huang, M. Han and K. Liu, Dynamics of an SIS reactiondiffusion epidemic model for disease transmission, Math. Biosci. Eng., 7 (2010), 51–66.
 13. D. H. Jiang and Z. C. Wang, The diffusive logistic equation on periodically evolving domains, J. Math. Anal. Appl. 458 (2018), 93–111.
 14. C. X. Lei, Z. G. Lin and Q. Y. Zhang, The spreading front of invasive species in favorable habitat or unfavorable habitat, J. Differential Equations, 257 (2014), 145–166.
 15. C. X. Lei, H. Nie, W. Dong, et al., Spreading of two competing species governed by a free boundary model in a shifting environment, J. Math. Anal. Appl., 462 (2018), 1254–1282.
 16. H. C. Li, R. Peng and F. B.Wang, Varying total population enhances disease persistence: Qualitative analysis on a diffusive SIS epidemic model, J. Differential Equations, 262 (2017), 885–913.
 17. Z. G. Lin and H. P. Zhu, Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary, J. Math. Biol., 75 (2017), 1381–1409.
 18. C. V. Pao, Stability and attractivity of periodic solutions of parabolic systems with time delays, J. Math. Anal. Appl., 304 (2005), 423–450.
 19. T. J. Poole and M. S. Steinberg, Amphibian pronephric duct morphogenesis: segregation, cell rearrangement and directed migration of the Ambystoma duct rudiment, Development, 63 (1981), 1–16.
 20. S. Sun, L. Pu and Z. Lin, Dynamics of the logistic harvesting model with infinite delay on periodically evolving domains, Commun. Math. Biol. Neurosci., 2018 (2018), 19 pages.
 21. Q. Tang and Z. Lin, The asymptotic analysis of an insect dispersal model on a growing domain, J. Math. Anal. Appl., 378 (2011), 649–656.
 22. Q. Tang, L. Zhang and Z. Lin, Asymptotic profile of species migrating on a growing habitat, Acta Appl. Math., 116 (2011), 227.
 23. C. Tian and S. Ruan, A free boundary problem for Aedes aegypti mosquito invasion, Appl. Math. Model., 46 (2017), 203–217.
 24. M. Wang, The diffusive logistic equation with a free boundary and signchanging coefficient, J. Differential Equations, 258 (2015), 1252–1266.
 25. M. Wang and Y. Zhang, Dynamics for a diffusive preypredator model with different free boundaries, J. Differential Equations, 264 (2018), 3527–3558.
 26. W. D.Wang and X. Q. Zhao, Basic reproduction numbers for reactiondiffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 16521673.
 27. N. Waterstraat, On bifurcation for semilinear elliptic Dirichlet problems on shrinking domains, Springer Proc. Math. Stat., 415 (2014), 240–246.
 28. X. Q. Zhao, Dynamical System in Population Biology, Second Edition, CMS Books in Mathematics /Ouvrage de Mathmatiques de la SMC, Springer, Cham, (2017).
 29. Y. Zhao and M. Wang, A reactiondiffusionadvection equation with mixed and free boundary conditions, J. Dyn. Differ. Equ., 30 (2018), 743–777.
Reader Comments
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *