
Mathematical Biosciences and Engineering, 2019, 16(4): 30183046. doi: 10.3934/mbe.2019150
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Analysis and numerical simulation of an inverse problem for a structured cell population dynamics model
1 Inria, Université ParisSaclay, France
2 LMS, Ecole Polytechnique, CNRS, Université ParisSaclay, France
3 MaIAGE, INRA, Université ParisSaclay, France
Received: , Accepted: , Published:
Special Issues: Mathematical Modelling in Cell Biology
References
1. M. E. Gurtin and R. C. MacCamy, Nonlinear agedependent population dynamics, Arch. Ration. Mech. Anal., 54(1974): 281–300.
2. B. L. Keyfitz and N. Keyfitz, The McKendrick partial differential equation and its uses in epidemiology and population study, Math. Comput. Model., 26(1997): 1–9.
3. L. M. Abia, O. Angulo and J. C. LópezMarcos, Agestructured population models and their numerical solution, Ecol. Modell., 188(2005):112–136.
4. C. Chiu, Nonlinear agedependent models for prediction of population growth, Math. Biosci., 99(1990): 119–133.
5. A. M. de Roos, Numerical methods for structured population models: the escalator boxcar train, Numer. Methods Partial. Differ. Equ., 4(1988): 173–195.
6. W. Rundell, Determining the birth function for an age structured population, Math. Popul. Stud., 1(1989): 377–395.
7. W. Rundell, Determining the death rate for an agestructured population from census data, SIAM J. Appl. Math., 53(1993): 1731–1746.
8. M. Gyllenberg, A. Osipov, and L. Pivrinta, The inverse problem of linear agestructured population dynamics, J. Evol. Equ., 2(2002): 223–239.
9. A. J. Lotka, The structure of a growing population, Hum. Biol., 3(1931): 459–493.
10. A. J. Lotka, On an integral equation in population analysis, Ann. Math. Stat., 10(1939): 144–161.
11. F. Clément, F. Robin and R. Yvinec, Analysis and calibration of a linear model for structured cell populations with unidirectional motion : Application to the morphogenesis of ovarian follicles, SIAM J. Appl. Math., 79(2019): 207–229.
12. P. Gabriel, Measure solutions to the conservative renewal equation. ESAIM Proc. Surveys, 62(2018): 68–78.
13. P. Gwiazda, T. Lorenz and A. MarciniakCzochra, A nonlinear structured population model: Lipschitz continuity of measurevalued solutions with respect to model ingredients, J. Differ. Equ., 248(2010): 2703–2735.
14. P. Gabriel, S. P. Garbett, V. Quaranta et al., The contribution of age structure to cell population responses to targeted therapeutics, J. Theor. Biol., 311(2012): 19–27.
15. A. Perasso and U. Razafison, Identifiability problem for recovering the mortality rate in an agestructured population dynamics model, Inverse Probl. Sci. Eng., 24(2016): 711–728.
16. B. Perthame and J. P. Zubelli, On the inverse problem for a sizestructured population model. Inverse Problems, 23(2007): 1037.
17. M. Doumic, B. Perthame and J. P. Zubelli, Numerical solution of an inverse problem in sizestructured population dynamics, Inverse Problems, 25(2009): 045008.
18. T. Bourgeron, M. Doumic and M. Escobedo, Estimating the division rate of the growthfragmentation equation with a selfsimilar kernel, Inverse Problems, 30(2014): 025007.
19. M. Iannelli, T. Kostova and F. Augusto Milner, A fourthorder method for numerical integration of age and sizestructured population models, Numer. Methods Partial. Differ. Equ., 25(2009): 918–930.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)