
Mathematical Biosciences and Engineering, 2019, 16(4): 28522874. doi: 10.3934/mbe.2019141.
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
The SIS model with diffusion of virus in the environment
School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, P.R. China
Received: , Accepted: , Published:
Keywords: spatial heterogeneity; diffusion; basic reproduction number; threshold dynamics; traveling wave solution
Citation: Danfeng Pang, Yanni Xiao. The SIS model with diffusion of virus in the environment. Mathematical Biosciences and Engineering, 2019, 16(4): 28522874. doi: 10.3934/mbe.2019141
References:
 1. J. M. Boyce, G. PotterBynoe, C. Chenevert, et al., Environmental contamination due to methicillinresistant Staphylococcus aureus: possible infection control implications, Infect. Control Hosp. Epidemiol., 18 (1997), 622–627.
 2. J. M. Boyce, Environmental contamination makes an important contribution to hospital infection, J. Hosp. Infect., 65 (2007), 50–54.
 3. S. J. Dancer, Importance of the environment in meticillinresistant Staphylococcus aureus acquisition: the case for hospital cleaning, Lancet Infect. Dis., 8 (2008), 101–113.
 4. S. J. Dancer, The role of environmental cleaning in the control of hospital acquired infection, J. Hosp. Infect., 73 (2009), 378–385.
 5. D. J. Weber and W. A. Rutala, Role of environmental contamination in the transmission of vancomycinresistant enterococci, Infect. Control Hosp. Epidemiol., 18 (1997), 306–309.
 6. A. Rampling, S. Wiseman, L. Davis, et al., Evidence that hospital hygiene is important in the control of methicillinresistant Staphylococcus aureus, J. Hosp. Infect., 49 (2001), 109–116.
 7. D. J. Austin, M. J. Bonten, R. A. Weinstein, et al., Vancomycinresistant enterococci in intensivecare hospital settings:transmission dynamics, persistence, and the impact of infection control programs, Proc. Natl. Acad. Sci., 96 (1999), 6908–6913.
 8. B. S. Cooper, G. F. Medley and G. M. Scott, Preliminary analysis of the transmission dynamics of nosocomial infections:stochastic and management effects, J. Hosp. Infect., 43 (1999), 131–147.
 9. H. Grundmann, S. Hori, B. Winter, et al., Risk factors for the transmission of methicillinresistant Staphylococcus aureusin an adult intensive care unit:fitting a model to the data, J. Infect. Dis. 185 (2002), 481–488.
 10. J. Raboud, R. Saskin, A. Simor, et al., Modeling transmission of methicillinresistant Staphylococcus aureusamong patients admitted to a hospital, Infect. Control Hosp. Epidemiol., 26 (2005), 607–615.
 11. V. Sebille and A. J. Valleron, A computer simulation model for the spread of nosocomial infections caused by multidrugresistant pathogens, Comput. Biomed. Res., 30 (1997), 307–322.
 12. V. Sebille, S. Chevret and A. J. Valleron, Modeling the spread of resistant nosocomial pathogens in an intensivecare unit, Infect. Control Hosp. Epidemiol., 18 (1997), 84–92.
 13. X.Wang, Y. Xiao, J.Wang, et al., A mathematical model of effects of environmental contamination and presence of volunteers on hospital infections in China, J. Theor. Biol., 293 (2012), 161–173.
 14. X. Wang, Y. Xiao, J. Wang, et al., Stochastic disease dynamics of a hospital infection model, Math. Biosci., 241 (2013), 115–124.
 15. X. Wang, Y. Chen, W. Zhao, et al., A datadriven mathematical model of multidrug resistant Acinetobacter baumannii transmission in an intensive care unit, Sci. Rep., 5 (2015), 9478.
 16. L. J. S. Allen, B. M. Bolker, Y. Lou, et al., Asymptotic profiles of the steady states for an SIS epidemic reactiondiffusion model, Discrete Contin. Dyn. Syst. Ser. A, 21 (2008), 1–20. 17. K. Deng and Y. Wu, Dynamics of a susceptibleinfectedsusceptible epidemic reaction diffusion model, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 929–946.
 18. R. Peng, Asymptotic profiles of the positive steady state for an SIS epidemic reactiondiffusion model. Part I, J. Diff. Equ., 247 (2009), 1096–1119.
 19. R. Peng and S. Liu, Global stability of the steady states of an SIS epidemic reactiondiffusion model, Nonlinear Anal., 71 (2009), 239–247.
 20. R. Peng and F. Yi, Asymptotic profile of the positive steady state for an SIS epidemic reactiondi ffusion model: effects of epidemic risk and population movement, Phys. D, 259 (2013), 8–25.
 21. R. Peng and X.Q. Zhao, A reactiondiffusion SIS epidemic model in a timeperiodic environment, Nonlinearity, 25 (2012), 1451–1471.
 22. Y. Wu and X. Zou, Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism, J. Diff. Equ., 261 (2016), 4424–4447.
 23. W. Wang and X.Q. Zhao, Basic reproduction numbers for reactiondiffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652–1673.
 24. X.Q. Zhao, Dynamical Systems in Population Biology, Springer, New York, 2017.
 25. L. Zhang, Z. C. Wang and X.Q. Zhao, Threshold dynamics of a time periodic reactiondiffusion epidemic model with latent period, J. Diff. Equ., 258 (2015), 3011–3036.
 26. L. Zhang and Z.C. Wang, A timeperiodic reactiondiffusion epidemic model with infection period, Z. Angew. Math. Phys., 67 (2016), 117, 14 pp.
 27. R. Cui and Y. Lou, A spatial SIS model in advective heterogeneous environments, J. Diff. Equ., 261 (2016), 3305–3343.
 28. R. Cui, K. Y. Lam and Y. Lou, Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments, J. Diff. Equ., 263 (2017), 2343–2373.
 29. K. Kuto, H. Matsuzawa and R. Peng, Concentration profile of the endemic equilibria of a reactiondi ffusionadvection SIS epidemic model, Calc. Var., 56 (2017), 1–28.
 30. H. Li, R. Peng and F.B. Wang, Vary total population enhances disease persistence: qualitative analysis on a diffusive SIS epidemic model, J. Diff. Equ., 262 (2017), 885–913.
 31. H. Li, R. Peng and Z.A. Wang, On a diffusive susceptibleinfectedsusceptible epidemic model with mass action mechanism and birthdeath effect: analysis, simulations, and comparison with other mechanisms, SIAM J. Appl. Math., 78 (2018), 2129–2153.
 32. S. Bonhoeffer, R. M. May, G. M. Shaw, et al., Virus dynamics and drug therapy, Proc. Natl. Acad. Sci., 94 (1997), 6971–6976.
 33. M. A. Nowak, S. Bonhoeffer, A. M. Hill, et al., Viral dynamics in hepatitis B virus infection, Proc. Natl. Acad. Sci., 93 (1996), 4398–4402.
 34. C. M. Brauner, D. Jolly, L. Lorenzi, et al., Heterogeneous viral environment in a HIV spatial model, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 545–572.
 35. H. Pourbashash, S. S. Pilyugin, P. De Leenheer, et al., Global analysis of within host virus models with celltocell viral transmission, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3341–3357.
 36. X. Ren, Y. Tian, L. Liu, et al., A reactiondiffusion withinhost HIV model with celltocell transmission, J. Math. Biol., 76 (2018), 1–42.
 37. F. Wang, Y. Huang and X. Zou, Global dynamics of a PDE inhost viral model, Appl. Anal., 93 (2014), 2312–2329.
 38. K. Wang and W. Wang, Propagation of HBV with spatial dependence, Math. Biosci., 210 (2007), 78–95.
 39. K. Wang, W. Wang and S. Song, Dynamics of an HBV model with diffusion and delay, J. Theor. Biol., 253 (2008), 36–44.
 40. J. Wang, J. Yang and T. Kuniya, Dynamics of a PDE viral infection model incorporating celltocell transmission, J. Math. Anal. Appl., 444 (2016), 1542–1564.
 41. Y. Wu and X. Zou, Dynamics and profiles of a diffusive hostpathogen system with distinct dispersal rates, J. Diff. Equ., 264 (2018), 4989–5024.
 42. Y. Yang, J. Zhou, X. Ma, et al., Nonstandard finite difference scheme for a diffusive withinhost virus dynamics model with both virustocell and celltocell transmissions, Comput. Math. Appl., 72 (2016), 1013–1020.
 43. H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monogr., 41 (1995). http://bok.cc/book/2625388/ 3a5dac
 44. R. Martin and H. L. Smith, Abstract functional differential equations and reactiondiffusion systems, Trans. AMS., 321 (1990), 1–44.
 45. Y. Lou and X.Q. Zhao, A reactiondiffusion malaria model with incubation period in the vector population, J. Math. Biol., 62 (2011), 543–568.
 46. M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer Verlag, New York, 1984.
 47. K. Deimling, Nonlinear Functional Analysis, SpringerVerlag, Berlin, 1985.
 48. S. B. Hsu, F. B. Wang and X.Q. Zhao, Dynamics of a periodically pulsed bioreactor model with a hydraulic storage zone, J. Dyn. Differ. Equ., 23 (2011), 817–842.
 49. G. R. Sell and Y. You, Dynamics of Evolutionary Equations, SpringerVerlag, New York, 2002.
 50. P. Magal and X.Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM. J. Math. Anal., 37 (2005), 251–275.
 51. S. B. Hsu, F. B. Wang and X.Q. Zhao, Global dynamics of zooplankton and harmful algae in flowing habitats, J. Diff. Equ., 255 (2013), 265–297.
 52. H. R. Thieme, Convergence results and a Poincar Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755–763.
 53. H. L. Smith and XQ. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal., 47 (2001), 6169–6179.
 54. P. Szmolyan, Transversal heteroclinic and homoclinic orbits in singular perturbation problems, J. Diff. Equ., 92 (1991), 252–281.
 55. W.Wang and X.Q. Zhao, An epidemic model in a patchy environment, Math. Biosci., 190 (2004), 97–112.
 56. N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Diff. Equ., 31 (1979), 53–98.
 57. P. Hartman, Ordinary Differential Equations, Wiley and Sons, Baltimore, 1973. http://bok. cc/book/981126/b95a4b
 58. X. Lai and X. Zou, Repulsion Effect on Superinfecting Virions by Infected Cells, Bull. Math. Biol., 76 (2014), 2806–2833.
Reader Comments
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *