
Mathematical Biosciences and Engineering, 2019, 16(4): 27562774. doi: 10.3934/mbe.2019137
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Equivalent deformation modulus of sandy pebble soil—Mathematical derivation and numerical simulation
1 School of Civil Engineering & Transportation, South China University of Technology, Guangzhou, Guangdong 510641, China
2 School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, M13 9PL, United Kingdom
3 Guangzhou UniversityTamkang University Joint Research Centre for Engineering Structure Disaster Prevention and Control, Guangzhou University, Guangzhou, Guangdong 510006, China
Received: , Accepted: , Published:
Special Issues: Mathematical Methods in Civil Engineering
References
1. B. Y. Xue, Q. T. Yue, Y. D. Li, et al., Prediction for surface collapse deformation of shield construction based on LESSVM, Chin. J. Rock Mech. Eng., 32 (2013), 3666–3674.
2. A. J. Markworth and J. H. Saunders, A model of structure optimization for a functionally graded material, Mater. Lett., 22 (1995), 103–107.
3. J. D. Eshelby and R. E. Peierls, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. A, 241 (1957), 376–396.
4. J. D. Eshelby and R. E. Peierls, The elastic field outside an ellipsoidal inclusion, Proc. R. Soc. A, 252 (1959), 561–569.
5. X. Jin, Z. Wang, Q. Zhou, et al., On the solution of an elliptical inhomogeneity in plane elasticity by the Equivalent Inclusion Method, J. Elast., 114 (2014), 1–18.
6. X. Jin, X. Zhang, P. Li, et al., On the displacement of a twodimensional Eshelby inclusion of elliptic cylindrical, J. Appl. Mech., 84 (2017), 074501.
7. G. Zuccaro, S. Trotta, S. Sessa, et al., Analytical solution of elastic fields induced by a 2D inclusion of arbitrary polygonal shape. Procedia Struct. Integr., 6 (2017), 236–243.
8. M. Hu, G. Y. Xu and S. B. Hu, Study of equivalent elastic modulus of sand gravel soil with Eshelby tensor and MoriTanaka equivalent method, Rock Soil Mech., 34 (2013), 1437–1442+1448.
9. H. Ma, M. Z. Gao, J. K. Zhang, et al., Theoretical model developed for equivalent elastic modulus estimation of cobblestone soil matrix. Rock Soil Mech., 32 (2011), 3642–3646.
10. V. Buryachenko, Micromechanics of heterogeneous materials, Springer Science & Business Media, 2007.
11. V. A. Buryachenko, On the thermoelastostatics of heterogeneous materials: I. General integral equation, Acta Mech., 213 (2010), 359–374.
12. M. Wang and N. Pan, Predictions of effective physical properties of complex multiphase materials, Mater. Sci. Eng. R. Rep., 63 (2008), 1–30.
13. R. W. Zimmerman, Thermal conductivity of fluidsaturated rocks, J. Pet. Sci. Eng., 3 (1989), 219–227.
14. M. Orrhede, R. Tolani and K. Salama, Elastic constants and thermal expansion of aluminumSiC metalmatrix composites, Res. Nondestruct. Eval., 8 (1996), 23–37.
15. V. A. Buryachenko and W. S. Kreher, Internal residual stresses in heterogeneous solidsA statistical theory for particulate composites, J. Mech. Phys. Solids, 43 (1995), 1105–1125.
16. C. P. Wong and R. S. Bollampally, Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging, J. Appl. Polym. Sci., 74 (1999), 3396–3403.
17. M. R. Wang and N. Pan, Predictions of effective physical properties of complex multiphase materials, Mater. Sci. Eng. R. Rep., 63 (2008), 1–30.
18. B. Paul, Prediction of elastic constants of multiphase materials. Trans. Metall. Soc. AIME, 218 (1960), 3641.
19. Z. Hashin and S. Shtrikman, A variational approach to the theory of the elastic behavior of multiphase materials, J. Mech. Phys. Solids, 11 (1963), 127–140.
20. Z. Hashin, Theory of mechanical behavior of heterogeneous media, Appl. Mech. Rev., 17 (1964), 1–9.
21. J. Z. Huang and G. Y. Xu, Study on the Constitutive Model of Sandy Pebble Soil. In: Wu W., Yu HS. (eds) Proceedings of ChinaEurope Conference on Geotechnical Engineering. Springer Series in Geomechanics and Geoengineering. Springer, Cham (2018), 26–30.
22. T. A. Ghezzehei and D. Or, Rheological properties of wet soils and clays under steady and oscillatory stresses, Soil Sci. Soc. Am. J., 65 (2001), 624–637.
23. C. M. Bishop, M. Tang, R. M. Cannon, et al., Continuum modelling and representations of interfaces and their transitions in materials, Mater. Sci. Eng. A, 422 (2006), 102–114.
24. W. G. Holtz and H. J. Gibbs, Triaxial shear tests on pervious gravelly soils, ASCE J. Soil Mech. Found. Div., 82 (1956), 1–22.
25. K. Zhou, H. J. Hoh, X. Wang, et al., A review of recent works on inclusions. Mech. Mater., 60 (2013), 144–158.
26. Z. Yuan, F. Li, F. Xue, et al., Analysis of The stress states and interface damage in a particle reinforced composite based on a micromodel using cohesive elements, Mater. Sci. Eng. A. Struct. Mater. Prop. Microstruct. Process., 589 (2014), 288−302.
27. K. E. Koumi, L. Zhao, J. Leroux, et al., Contact analysis in the presence of an ellipsoidal inhomogeneity within a half space, Int. J. Solids Struct., 51 (2014), 1390–1402.
28. L. RodriguezTembleque, F. Buroni, R. Abascal, et al. Analysis of FRP composites under frictional contact conditions. Int. J. Solids Struct., 50 (2013), 3947–3959.
29. J. J. Williams, J. Segurado, J. LLorca, et al., Three dimensional (3D) microstructurebased modeling of interfacial decohesion in particle reinforced metal matrix composites, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 557 (2012), 113−118.
30. Y. Su, Q. Ouyang, W. Zhang, et al., Composite structure modeling and mechanical behavior of particle reinforced metal matrix composites, Mater. Sci. Eng. A. Struct. Mater. Prop. Microstruct. Process., 597 (2014), 359–369.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)