
Mathematical Biosciences and Engineering, 2019, 16(4): 25872612. doi: 10.3934/mbe.2019130
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Hopf bifurcation in a CTLinclusive HIV1 infection model with two time delays
1 School of Mathematics and Statistics, Xinyang Normal University, Xinyang, Henan, 464000, P. R. China
2 Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
3 College of Mathematics and Information Science, Henan Normal University, Xinxiang, Henan, 453000, P. R. China
Received: , Accepted: , Published:
Special Issues: Modeling and Complex Dynamics of Populations
References
1. A. L. Cunningham, H. Donaghy, A. N. Harman, et al., Manipulation of dendritic cell function by viruses, Curr. Opin. Microbiol., 13 (2010), 524–529.
2. A. S. Perelson and R. M. Ribeiro, Modeling the withinhost dynamics of HIV infection, BMC Biology, 11 (2013), 96.
3. R. M. Riberio and A. S. Perelson, The analysis of HIV dynamics using mathematical modeling, in AIDS and other manisfestation of HIV infection, (Edited by G.P. Wormser), San Diego, Elsevier, (2004), 905–912.
4. P. De Leenheer and H. L. Smith, Virus dynamics: a global analysis, SIAM J. Appl. Math., 63 (2003), 1313–1327.
5. A. M. Elaiw and S. A. Azoz, Global properties of a class of HIV infection models with BeddingtonDeAngelis functional response, Math. Methods Appl. Sci., 36 (2013), 383–394.
6. X. Lai and X. Zou, Modeling celltocell spread of HIV1 with logistic target cell growth, J. Math. Anal. Appl., 426 (2015), 563–584.
7. K. A. Pawelek, S. Liu, F. Pahlevani, et al., A model of HIV1 infection with two time delays: mathematical analysis and comparison with patient data, Math. Biosci., 235 (2012), 98–109.
8. A. S. Perelson, D. E. Kirschner and R. de Boer, Dynamics of HIV infection of CD4^{+} T cells, Math. Biosci., 114 (1993), 81–125.
9. A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV1 dynamics in vivo, SIAM Rev., 41 (1999), 3–44.
10. P. K. Srivastava, M. Banerjee and P. Chandra, A primary infection model for HIV and immune response with two discrete time delays, Differ. Equ. Dyn. Syst., 18 (2010), 385–399.
11. P. K. Srivastava and P. Chandra, Hopf bifurcation and periodic solutions in a dynamical model for HIV and immune response, Differ. Equ. Dyn. Syst., 16 (2008), 77–100.
12. H. Wang, R. Xu, Z. Wang, et al., Global dynamics of a class of HIV1 infection models with latently infected cells, Nonlinear Anal. Model. Control, 20 (2015), 21–37.
13. X. Wang, Y. Lou and X. Song, Agestructured withinhost HIV dynamics with multiple target cells, Stud. Appl. Math., 138 (2017), 43–76.
14. X. Wang, G. Mink, D. Lin, et al., Influence of raltegravir intensification on viral load and 2LTR dynamics in HIV patients on suppressive antiretroviral therapy, J. Theor. Biol., 416 (2017), 16–27.
15. X. Wang, X. Song, S. Tang, et al., Dynamics of an HIV model with multiple infection stages and treatment with different drug classes, Bull. Math. Biol., 78 (2016), 322–349.
16. Y. Wang, Y. Zhou, F. Brauer, et al., Viral dynamics model with CTL immune response incorporating antiretroviral therapy, J. Math. Biol., 67 (2013), 901–934.
17. N. M. Dixit, M. Markowitz, D. D. Ho, et al., Estimates of intracellular delay and average drug efficacy from viral load data of HIVinfected individuals under antiretroviral therapy, Antivir. Ther., 9 (2004), 237–246.
18. A. V. M. Herz, S. Bonhoeffer, R. M. Anderson, et al., Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay, Proc. Nat. Acad. Sci. USA, 93 (1996), 7247– 7251.
19. K. Allali, S. Harroudi and D. F. M. Torres, Analysis and optimal control of an intracellular delayed HIV model with CTL immune response, Math. Comput. Sci., 12 (2018), 111–127.
20. M. S. Ciupe, B. L. Bivort, D. M. Bortz, et al., Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models, Math. Biosci., 200 (2006), 1–27.
21. R. V. Culshaw and S. Ruan, A delaydifferential equation model of HIV infection of CD4^{+} T cells, ath. Biosci., 165 (2000), 27–39.
22. R. V. Culshaw, S. Ruan and G. Webb, A mathematical model of celltocell HIV1 that include a time delay, J. Math. Biol., 46 (2003), 425–444.
23. B. Li, Y. Chen, X. Lu, et al., A delayed HIV1 model with virus waning term, Math. Biosci. Eng., 13 (2016), 135–157.
24. Y. Liu and C. Wu, Global dynamics for an HIV infection model with CrowleyMartin functional response and two distributed delays, J. Syst. Sci. Complex., 31 (2018), 385–395.
25. Y. Wang, Y. Zhou, J. Wu, et al., Oscillatory viral dynamics in a delayed HIV pathogenesis model, Math. Biosci., 219 (2009), 104–112.
26. H. Zhu and X. Zou, Dynamics of a HIV1 Infection model with cellmediated immune response and intracellular delay, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 511–524.
27. N. Tarfulea, A. Blink, E. Nelson, et al., A CTLinclusive mathematical model for antiretroviral treatment of HIV infection, Int. J. Biomath., 4 (2011), 1–22.
28. P. W. Nelson, J. D. Murray and A. S. Perelson, A model of HIV1 pathogenesis that Includes an intracellular delay, Math. Biosci., 163 (2000), 201–215.
29. J. K. Hale and S. Verduyn Lunel, Introduction to Functional Differential Equations, Springer Verlag, New York, 1993.
30. H. R. Thieme, Spectral bound and reproduction number for infinitedimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188–211.
31. J. LaSalle and S. Lefschetz, Stability by Liapunov's Direct Method, with Applications, Academic Press, New York, 1961.
32. E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144–1165.
33. X. Yan andW. Li, Stability and bifurcation in a simplified fourneural BAM network with multiple delays, Discrete Dyn. Nat. Soc., 2006 (2006), 1–29.
34. M. Y. Li and H. Shu, Multiple stable periodic oscillations in a mathematical model of CTL response to HTLVI infection, Bull. Math. Biol., 73 (2011), 1774–1793.
35. M. Y. Li, X. Lin and H. Wang, Global Hopf branches in a delayed model for immune response to HTLV1 infections: coexistence of multiple limit cycles, Can. Appl. Math. Q., 20 (2012), 39–50.
36. A. Debadatta and B. Nandadulal, Analysis and computation of multipathways and multidelays HIV1 infection model, Appl. Math. Model., 54 (2018), 517–536.
37. B. M. Adams, H. T. Banks, M. Davidian, et al., HIV dynamics: modeling, data analysis, and optimal treatment protocols, J. Comput. Appl. Math., 184 (2005), 10–49.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)