Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

A new deep learning model for assisted diagnosis on electrocardiogram

1 Harbin Institute of Technology, Shenzhen, 518055, China
2 German Cancer Research Center, 69120 Heidelberg, Germany
3 School of Computer Engineering, Shenzhen Polytechnic, Shenzhen, China

Special Issues: Application of Machine Learning Methods in Bio-medical Informatics

In order to enhance the accuracy of computer aided electrocardiogram analysis, we propose a deep learning model called CBRNN to assist diagnosis on electrocardiogram for clinical medical service. It combines two sub networks which are convolutional neural network (CNN) and bi-directional recurrent neural network (BRNN). In the model, CNN with one-dimension convolution is employed to extract features for each lead of ECG, and BRNN is used to fuse features of different leads to represent deeper features. In the training step, we use more than 40 thousand training data and more than 19 thousand validation data to obtain the optimal parameters of the model. Besides, by validating our model on more than CCDD 120,000 real data, it achieves an 87.69% accuracy rate, higher than popular deep learning models such as CNN and ResNet. Our model has better accuracy than state-of-the-art models and it is also slightly higher than the average accuracy of human judgement. It can be served for the first round screening of ECG examination clinical diagnosis.
  Article Metrics

Keywords clinical medicine; electrocardiogram; multi-lead; convolutional neural network; bi-directional recurrent neural network

Citation: Eric Ke Wang, liu Xi, Ruipei Sun, Fan Wang, Leyun Pan, Caixia Cheng, Antonia Dimitrakopoulou-Srauss, Nie Zhe,Yueping Li. A new deep learning model for assisted diagnosis on electrocardiogram. Mathematical Biosciences and Engineering, 2019, 16(4): 2481-2491. doi: 10.3934/mbe.2019124


  • 1. K. Mahantapas, M. Nasipuri and D. K. Basu, Knowledge-based ECG interpretation: a critical review, Pat. Rec., 33.3(2000), 351–373.
  • 2. M. G. Tsipouras, D. I. Fotiadis and D. Sideris, An arrhythmia classification system based on the RR-interval signal, Art. Intel. Med., 33.3(2005), 237–250.
  • 3. K. Daqrouq, A. Alkhateeb and M. N. Ajour, et al., Neural network and wavelet average framing percentage energy for atrial fibrillation classification, Comput. Meth. Pro. Biomed., 113.3(2014), 919–926.
  • 4. H. Huang, J. Liu and Q. Zhu, et al., A new hierarchical method for inter-patient heartbeat classification using random projections and RR intervals, BioMed. Eng. OnL., 13.1(2014), 90.
  • 5. ADDIN EN.REFLIST C. Ye, B. V. K. V. Kumar and M. T. Coimbra., Heartbeat classification using morphological and dynamic features of ECG signals, IEEE Trans. Biomed. Eng., 59.10(2012), 2930–2941.
  • 6. Y. Kutlu and D. Kuntalp, A multi-stage automatic arrhythmia recognition and classification system, Comput. Bio. Med., 41.1(2011), 37–45.
  • 7. E. D. Übeyli, Combining recurrent neural networks with eigenvector methods for classification of ECG beats, Dig. Sig. Proc., 19(2009), 320–329.
  • 8. E.D.Übeyli, Recurrent neural networks with composite features for detection of electrocardiographic changes in partial epileptic patients, Comput. Bio. Med., 38.3(2008), 401–410.
  • 9. W. K. Lei, B. N. Li and M. C. Dong, et al., An application of morphological feature extraction and support vector machines in computerized ECG interpretation, IEEE Six. Mex. Inter. Conf. Arti. Intel. Spec. Ses., 64.3(2007), 701–712.
  • 10. X. H. Li, L. Shu and H. Hu, Kernel-based nonlinear dimensionality reduction for electrocardiogram recognition, Neu. Comp. App., 18.8(2009), 1013–1020.
  • 11. G. Doquire, G. D. Lannoy and D Francois, et al., Feature Selection for Interpatient Supervised Heart Beat Classification, Comp. Intel. Neur., (2011), 1–9.
  • 12. R. J. Martis, C. Chakraborty and A. K. Ray., A two-stage mechanism for registration and classification of ECG using Gaussian mixture model, Pat. Rec., 42.11(2009), 2979–2988.
  • 13. W. S. K. Esbensen and P. Geladi, Principal component analysis, Chem. and intel. lab. sys., 2(1987), 37–52.
  • 14. A. J. Izenman, Linear discriminant analysis, Mod. Multi. Stati. Tech., (2013), 237–280.
  • 15. A. J. Bell and T. J. Sejnowski, The "independent components" of natural scenes are edge filters, Vis. Res., 37(1997), 3327–3338.
  • 16. C. Cortes, and V. Vapnik, Support vector machine. Mach.Learn., 20.3(1995), 273–297.
  • 17. S. Kiranyaz, T. Ince and M. Gabbouj, Real-time patient-specific ECG classification by 1-D convolutional neural networks, IEEE Trans. Biomed. Engin., 63.3(2016), 664–675.
  • 18. M. Schuster and K. K. Paliwal, Bidirectional recurrent neural networks, IEEE Trans. Sign. Proc.,45.11( 1997), 2673–2681.
  • 19. K. He, X. Y. Zhang and S. Q. Ren, et al., Deep residual learning for image recognition, Proc. IEEE Conf. Comp. Pat. Rec., (2016).
  • 20. H. Zhu and J. Dong, An R-peak detection method based on peaks of Shannon energy envelope, Biomed. Sign. Proc. Cont., 8.5(2013), 466–474.
  • 21. D. E. Lake and J. R. Moorman, Accurate estimation of entropy in very short physiological time series: the problem of atrial fibrillation detection in implanted ventricular devices, Ame. J. Phys.-Hea. Cir. Phys., 300.1(2010), 319–325.
  • 22. N. Hakacova, E. Tragardhjohansson and G. S. Wagner, et al., Computer-based rhythm diagnosis and its possible influence on nonexpert electrocardiogram readers, J. Elec., 45.1(2012), 18–22.
  • 23. H. Yuki, F. Hamido and O. S. Lih, et al., Computer-aided diagnosis of atrial fibrillation based on ECG signals: A Review, Info. Sci., 467(2018), 99–114.
  • 24. U. R. Acharya, H. Fujita and S. L. Oh, et al., Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals, Info. Sci., 415–416(2017), 190–198.
  • 25. U. R. Acharya, H. Fujita and S. L. Oh, et al., Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network, F. Gen. Comp. Sys., 79.3(2018), 952–959.
  • 26. U. Raghavendra, H. Fujita and S. V. Bhandary, et al., Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images, Info. Sci., 441(2018), 41–49.
  • 27. U. R. Acharya, H. Fujita and S. L. Oh, et al., Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals, App. Intel., 49(2019), 16–27.


This article has been cited by

  • 1. Beanbonyka Rim, Nak-Jun Sung, Sedong Min, Min Hong, Deep Learning in Physiological Signal Data: A Survey, Sensors, 2020, 20, 4, 969, 10.3390/s20040969
  • 2. Weike Duan, Jinsen Zhang, Liang Zhang, Zongsong Lin, Yuhang Chen, Xiaowei Hao, Yixin Wang, Hongri Zhang, Evaluation of an artificial intelligent hydrocephalus diagnosis model based on transfer learning, Medicine, 2020, 99, 29, e21229, 10.1097/MD.0000000000021229

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved