
Mathematical Biosciences and Engineering, 2019, 16(4): 23342352. doi: 10.3934/mbe.2019117
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Extended model of impaired cerebral autoregulation in preterm infants: Heuristic feedback control
1 Department of Mathematics, Technical University of Munich, Boltzmannstr. 3, Garching, 85748, Germany
2 Research Unit for Cerebral Palsy and Children NeuroOrthopedics of the BuhlStrohmaierFoundation, Orthopedic Department of the Clinic ‘rechts der Isar’, Technical University of Munich, Ismaninger Str. 22, Munchen, 81675, Germany
Received: , Accepted: , Published:
References
1. J. Donnelly, M. J. Aries and M. Czosnyka, Further understanding of cerebral autoregulation at the bedside: possible implications for future therapy, Expert Rev. Neurother., 15 (2015), 169–185.
2. M. van de Bor and F. J. Walther, Cerebral blood flow velocity regulation in preterm infants, Biol. Neonate, 59 (1991), 329–335.
3. J. R. Kaiser, C. H. Gauss and D. K.Williams, The effects of hypercapnia on cerebral autoregulation in ventilated very low birth weight infants, Pediatr. Res., 58 (2005), 931–935.
4. J. J. Volpe, Intracranial hemorrhage: germinal matrix hemorrhage of the premature infant, in Neurology of the Newborn, 48 (2001), WB Saunders, Philadelphia, pp. 435.
5. T. Lekic, D. Klebe, R. Poblete, et al., Neonatal brain hemorrhage (NBH) of prematurity: translational mechanisms of the vascularneural network, Curr. Med. Chem., 22 (2015), 1214– 1238.
6. O. Pryds and A. D. Edwards, Cerebral blood flow in the newborn infant, Arch. Dis. Child Fetal, 74 (1996), F63–F69.
7. P. Ballabh, Intraventricular hemorrhage in premature infants: mechanism of disease, Pediatr. Res., 67 (2010), 1–8.
8. M. Ursino and C. A. Lodi, A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics, J. Appl. Physiol., 82 (1997), 1256–1269.
9. R. B. Panerai, S. L. Dawson and J. F. Potter, Linear and nonlinear analysis of human dynamic cerebral autoregulation, Am. J. Physiol. Heart C, 277 (1999), H1089–H1099.
10. M. S. Olufsen, A. Nadim and L. A. Lipsitz, Dynamics of cerebral blood flow regulation explained using a lumped parameter model, Am. J. Physiol. Reg. I, 282 (2002), R611–R622.
11. J. Alastruey, S. M. Moore, K.H. Parker, et al., Reduced modeling of blood flow in cerebral circulation: Coupling 1D, 0D and cerebral autoregulation models, Int. J. Numer. Meth. Fl., 56 (2008), 1061–1067.
12. V. Z. Marmarelis, D. C. Shin and R. Zhang, Linear and nonlinear modeling of cerebral flow autoregulation using principal dynamic modes, Open Biomed. Eng. J., 6 (2012), 42–55.
13. B. Spronck, E. G. Martens, E. D. Gommer, et al., A lumped parameter model of cerebral blood flow control combining cerebral autoregulation and neurovascular coupling, Am. J. Physiol. Heart C, 303 (2012), H1143–11H53.
14. R. Lampe, N. Botkin, V. Turova, et al., Mathematical modelling of cerebral blood circulation and cerebral autoregulation: towards preventing intracranial hemorrhages in preterm newborns, Comput. Math. Method M., (2014), 1–9.
15. S. Payne, Cerebral Autoregulation: Control of Blood Flow in the Brain, Springer, Berlin, 2016.
16. N. Botkin, V. Turova and R. Lampe, Feedback control of impaired cerebral autoregulation in preterm infants: Mathematical modelling, in 25th Mediterranean Conference on Control and Automation (MED), IEEE, (2017), 229–234.
17. S. K. Piechnik, P. A. Chiarelli and P. Jezzard, Modelling vascular reactivity to investigate the basis of the relationship between cerebral blood volume and flow under CO2 manipulation, NeuroImage, 39 (2008), 107–118.
18. U. H. Thome and N. Ambalavanan, Permissive hypercapnia to decrease lung injury in ventilated preterm neonates, Semin. Fetal Neonat. M., 14 (2009), 21–27.
19. J. P. Aubin, Viability Theory, Birkhäuser, Boston, 1991.
20. N. N. Krasovskii and A. I. Subbotin, Gametheoretical control problems, Springer, New York, 1988.
21. N. D. Botkin and V. L. Turova, Numerical construction of viable sets for autonomous conflict control systems, Mathematics, 2 (2014), 68–82.
22. J. L. LeFlore and W. D. Engle, Clinical factors influencing blood pressure in the neonate, NeoReviews, 3 (2002), e145–e150.
23. G. D. T. Inglis, K. R. Dunster and M. W. Davies, Establishing normal values of central venous pressure in very low birth weight infants, Physiol. Meas., 28 (2007), 1283.
24. J. M. Perlman, Neurology: Neonatology questions and controversies, Saunders/Elsevier, Philadelphia, 2008.
25. T.A. Polovova, Hemodynamics Features with Different Methods of Respiratory Support in Children with Extremely Low Body Weight, Ph.D thesis, Ural Scientific Research Institute of Maternity and Infancy Protection of the Ministry of Health of the Russian Federation in Ekaterinburg, 2014 (in Russian).
26. R. Lampe, V. Turova, N. Botkin, et al., Postnatal paraclinical parameters associated to occurrence of intracerebral hemorrhage in preterm infants, Neuropediatrics, (2018).
27. P. Cardaliaguet, A differential game with two players and one target, SIAM J. Control Optim., 34 (1996), 1441–1460.
28. P. Cardaliaguet, M. Quincampoix and P. SaintPierre, Set valued numerical analysis for optimal control and differential games, in M. Bardi, T. E. S. Raghavan, T. Parthasarathy (eds.) Stochastic and Differential Games: Theory and Numerical Methods. Annals of the International Society of Dynamic Games 4 (1999), Birkhäuser, Boston, 177–274.
29. N. Botkin, V. Turova, J. Diepolder, et al., Aircraft control during cruise flight in windshear conditions: viability approach, Dyn. Games Appl., (2017), 1–15.
30. N. D. Botkin and V. L. Turova, Examples of computed viability kernels, Trudy Inst. Mat. i Mekh. UrO RAN, 21 (2015), 306–319.
31. N. D. Botkin, K.H. Hoffmann, N. Mayer, et al., Approximation schemes for solving disturbed control problems with nonterminal time and state constraints, Analysis, 31 (2011), 355–379.
32. A. D. Edwards, J. S. Wyatt, C. Richardson, et al., Effects of indomethacin on cerebral haemodynamics in very preterm infants, The Lancet, 335 (1990), 1491–1495.
33. N. D. Botkin, A. E. Kovtanyuk, V. L. Turova, et al., Direct modeling of blood flow through the vascular network of the germinal matrix, Comput. Biol. Med., 92 (2018), 147–155.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)