
Mathematical Biosciences and Engineering, 2019, 16(4): 20862117. doi: 10.3934/mbe.2019102.
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
A literature review on latest developments of Harmony Search and its applications to intelligent manufacturing
1 Department of Industrial Systems Engineering and Management, National University of Singapore, 119077, Singapore
2 School of computer science, China University of Geosciences (Wuhan), Wuhan, 430074, China
3 The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Received: , Accepted: , Published:
Special Issues: Optimization methods in Intelligent Manufacturing
Keywords: harmony search; review; intelligent manufacturing; metaheuristic
Citation: Jin Yi, Chao Lu, Guomin Li. A literature review on latest developments of Harmony Search and its applications to intelligent manufacturing. Mathematical Biosciences and Engineering, 2019, 16(4): 20862117. doi: 10.3934/mbe.2019102
References:
 1. Z.W. Geem, Musicinspired harmony search algorithm: theory and applications, Springer, 2009.
 2. J. Kennedy, Particle swarm optimization, in Encyclopedia of machine learning, Springer, 2011, 760–766.
 3. M. Dorigo, V. Maniezzo and A. Colorni, Ant system: optimization by a colony of cooperating agents, IEEE T. Syst. Man. Cy. B., 26 (1996), 29–41.
 4. D. Karaboga and B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm, J. Global. Optim., 39 (2007), 459–471.
 5. X. S. Yang and S. Deb, Cuckoo search via lévy flights, in Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on, IEEE, 2009, 210–214.
 6. J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, MIT press, 1992.
 7. R. Storn and K. Price, Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces, J. Global. Optim., 11 (1997), 341–359.
 8. S. Kirkpatrick, Optimization by simulated annealing: Quantitative studies, J. Stat. Phy., 34 (1984), 975–986.
 9. A. Y. Lam and V. O. Li, Chemicalreactioninspired metaheuristic for optimization, IEEE Trans. Evol. Comput., 14 (2010), 381–399.
 10. Z. W. Geem, J. H. Kim and G. V. Loganathan, A new heuristic optimization algorithm: harmony search, Simulation, 76 (2001), 60–68.
 11. J. Yi, X. Li, L. Gao, et al., Optimal design of photovoltaicwind hybrid renewable energy system using a discrete geometric selective harmony search, in Computer Supported Cooperative Work in Design (CSCWD), 2015 IEEE 19th International Conference on, IEEE, (2015), 499–504.
 12. A. Chauhan and R. Saini, Discrete harmony search based size optimization of integrated renewable energy system for remote rural areas of uttarakhand state in india, Renew. Energy, 94 (2016), 587–604.
 13. Z. W. Geem and Y. Yoon, Harmony search optimization of renewable energy charging with energy storage system, Int. J. Electr. Power Energy Syst., 86 (2017), 120–126.
 14. C. CamachoGómez, S. JiménezFernández, R. MallolPoyato, et al., Optimal design of microgrid's network topology and location of the distributed renewable energy resources using the harmony search algorithm, Soft Comput., 1 (2018), 1–16.
 15. H. B. Ouyang, L. Q. Gao, S. Li, et al., Improved novel global harmony search with a new relaxation method for reliability optimization problems, Inform. Sci., 305 (2015), 14–55.
 16. W. Zeng, J. Yi, X. Rao, et al., A twostage path planning approach for multiple carlike robots based on ph curves and a modified harmony search algorithm, Eng. Optimiz., 49 (2017), 1995– 2012.
 17. S. Kundu and D. R. Parhi, Navigation of underwater robot based on dynamically adaptive harmony search algorithm, Memet. Comput., 8 (2016), 125–146.
 18. J. P. Papa, W. Scheirer and D. D. Cox, Finetuning deep belief networks using harmony search, Appl. Soft. Comput., 46 (2016), 875–885.
 19. W. Y. Lee, S. M. Park and K. B. Sim, Optimal hyperparameter tuning of convolutional neural networks based on the parametersettingfree harmony search algorithm, Optik, 172 (2018), 359– 367.
 20. S. Kulluk, L. Ozbakir and A. Baykasoglu, Training neural networks with harmony search algorithms for classification problems, Eng. Appl. Artif. Intell., 25 (2012), 11–19.
 21. S. Mun and Y. H. Cho, Modified harmony search optimization for constrained design problems, Expert. Syst. Appl., 39 (2012), 419–423.
 22. V. R. Pandi and B. K. Panigrahi, Dynamic economic load dispatch using hybrid swarm intelligence based harmony search algorithm, Expert. Syst. Appl., 38 (2011), 8509–8514.
 23. A. Kusiak, Intelligent manufacturing systems., Prentice Hall Press, 200 Old Tappan Toad, Old Tappan, NJ 07675, USA, (1990), 448.
 24. T. Ghosh, S. Sengupta, M. Chattopadhyay, et al., Metaheuristics in cellular manufacturing: A stateoftheart review, Int. J. Ind. Eng. Comput., 2 (2011), 87–122.
 25. M. Alavidoost, M. F. Zarandi, M. Tarimoradi, et al., Modified genetic algorithm for simple straight and ushaped assembly line balancing with fuzzy processing times, J. Intell. Manuf., 28 (2017), 313–336.
 26. C. L. Kuo, C. H. Chu, Y. Li, et al., Electromagnetismlike algorithms for optimized tool path planning in 5axis flank machining, Comput. Ind. Eng., 84 (2015), 70–78.
 27. X. Li, C. Lu, L. Gao, et al., An effective multiobjective algorithm for energy efficient scheduling in a reallife welding shop, IEEE T. Ind. Inform., 14 (2018), 5400–5409.
 28. C. Lu, L. Gao, X. Li, et al., A multiobjective approach to welding shop scheduling for makespan, noise pollution and energy consumption, J. Cleaner. Prod., 196 (2018), 773–787.
 29. C. Lu, L. Gao, Q. Pan, et al., A multiobjective cellular grey wolf optimizer for hybrid flowshop scheduling problem considering noise pollution, Appl. Soft. Comput., 75 (2019), 728–749.
 30. X. S. Yang, Harmony search as a metaheuristic algorithm, in Musicinspired harmony search algorithm, Springer, (2009), 1–14.
 31. G. Ingram and T. Zhang, Overview of applications and developments in the harmony search algorithm, in Musicinspired harmony search algorithm, Springer, (2009), 15–37.
 32. O. Moh'd Alia and R. Mandava, The variants of the harmony search algorithm: an overview, Artif. Intell. Rev., 36 (2011), 49–68.
 33. X. Wang, X. Z. Gao and K. Zenger, The variations of harmony search and its current research trends, in An Introduction to Harmony Search Optimization Method, Springer, (2015), 21–30.
 34. A. Askarzadeh, Solving electrical power system problems by harmony search: a review, Artif. Intell. Rev., 47 (2017), 217–251.
 35. A. Askarzadeh and E. Rashedi, Harmony search algorithm: Basic concepts and engineering applications, in Intelligent Systems: Concepts, Methodologies, Tools, and Applications, 1–30.
 36. J. Yi, X. Li, C. H. Chu, et al., Parallel chaotic local search enhanced harmony search algorithm for engineering design optimization, J. Intell. Manuf., 30 (2019), 405–428.
 37. M. Mahdavi, M. Fesanghary and E. Damangir, An improved harmony search algorithm for solving optimization problems, Appl. Math. Comput., 188 (2007), 1567–1579.
 38. M. G. Omran and M. Mahdavi, Globalbest harmony search, Appl. Math. Comput., 198 (2008), 643–656.
 39. Q. K. Pan, P. N. Suganthan, M. F. Tasgetiren, et al., A selfadaptive global best harmony search algorithm for continuous optimization problems, Appl. Math. Comput., 216 (2010), 830–848.
 40. D. Zou, L. Gao, J.Wu, et al., Novel global harmony search algorithm for unconstrained problems, Neurocomputing, 73 (2010), 3308–3318.
 41. J. Chen, Q. K. Pan and J. Q. Li, Harmony search algorithm with dynamic control parameters, Appl. Math. Comput., 219 (2012), 592–604.
 42. R. Enayatifar, M. Yousefi, A. H. Abdullah, et al., Lahs: a novel harmony search algorithm based on learning automata, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 3481–3497.
 43. A. Kattan and R. Abdullah, A dynamic selfadaptive harmony search algorithm for continuous optimization problems, Appl. Math. Comput., 219 (2013), 8542–8567.
 44. K. Luo, A novel selfadaptive harmony search algorithm, J. Appl. Math., 2013 (2013), 1–16.
 45. X.Wang and X. Yan, Global best harmony search algorithm with control parameters coevolution based on pso and its application to constrained optimal problems, Appl. Math. Comput., 219 (2013), 10059–10072.
 46. J. Contreras, I. Amaya and R. Correa, An improved variant of the conventional harmony search algorithm, Appl. Math. Comput., 227 (2014), 821–830.
 47. M. Khalili, R. Kharrat, K. Salahshoor, et al., Global dynamic harmony search algorithm: Gdhs, Appl. Math. Comput., 228 (2014), 195–219.
 48. V. Kumar, J. K. Chhabra and D. Kumar, Parameter adaptive harmony search algorithm for unimodal and multimodal optimization problems, J. Comput. Sci., 5 (2014), 144–155.
 49. G. Li and Q. Wang, A cooperative harmony search algorithm for function optimization, Math. Probl. Eng., 2014 (2014), 1–14.
 50. I. Amaya, J. Cruz and R. Correa, Harmony search algorithm: a variant with selfregulated fretwidth, Appl. Math. Comput., 266 (2015), 1127–1152.
 51. J. Kalivarapu, S. Jain and S. Bag, An improved harmony search algorithm with dynamically varying bandwidth, Eng. Optimiz., 48 (2016), 1091–1108.
 52. Y. Wang, Z. Guo and Y. Wang, Enhanced harmony search with dual strategies and adaptive parameters, Soft Comput., 21 (2017), 4431–4445.
 53. Z. Guo, H. Yang, S. Wang, et al., Adaptive harmony search with bestbased search strategy, Soft Comput., 22 (2018), 1335–1349.
 54. M. A. AlBetar, I. A. Doush, A. T. Khader, et al., Novel selection schemes for harmony search, Appl. Math. Comput., 218 (2012), 6095–6117.
 55. M. A. AlBetar, A. T. Khader, Z. W. Geem, et al., An analysis of selection methods in memory consideration for harmony search, Appl. Math. Comput., 219 (2013), 10753–10767.
 56. M. Castelli, S. Silva, L. Manzoni, et al., Geometric selective harmony search, Inform. Sci., 279 (2014), 468–482.
 57. X. Gao, X. Wang, S. Ovaska, et al., A hybrid optimization method of harmony search and oppositionbased learning, Eng. Optimiz., 44 (2012), 895–914.
 58. A. Kaveh and M. Ahangaran, Social harmony search algorithm for continuous optimization, Iran. J. Sci. Technol. Trans. BEng., 36 (2012), 121–137.
 59. P. Yadav, R. Kumar, S. K. Panda, et al., An intelligent tuned harmony search algorithm for optimisation, Inform. Sci., 196 (2012), 47–72.
 60. M. A. AlBetar, A. T. Khader, M. A. Awadallah, et al., Cellular harmony search for optimization problems, J. Appl. Math., 2013 (2013), 1–20.
 61. S. Ashrafi and A. Dariane, Performance evaluation of an improved harmony search algorithm for numerical optimization: Melody search (ms), Eng. Appl. Artif. Intell., 26 (2013), 1301–1321.
 62. M. ElAbd, An improved globalbest harmony search algorithm, Appl. Math. Comput., 222 (2013), 94–106.
 63. B. H. F. Hasan, I. A. Doush, E. Al Maghayreh, et al., Hybridizing harmony search algorithm with different mutation operators for continuous problems, Appl. Math. Comput., 232 (2014), 1166–1182.
 64. E. Valian, S. Tavakoli and S. Mohanna, An intelligent global harmony search approach to continuous optimization problems, Appl. Math. Comput., 232 (2014), 670–684.
 65. A. M. Turky and S. Abdullah, A multipopulation harmony search algorithm with external archive for dynamic optimization problems, Inform. Sci., 272 (2014), 84–95.
 66. M. A. AlBetar, M. A. Awadallah, A. T. Khader, et al., Islandbased harmony search for optimization problems, Expert. Syst. Appl., 42 (2015), 2026–2035.
 67. J. Yi, L. Gao, X. Li, et al., An efficient modified harmony search algorithm with intersect mutation operator and cellular local search for continuous function optimization problems, Appl. Intell., 44 (2016), 725–753.
 68. B. Keshtegar and M. O. Sadeq, Gaussian globalbest harmony search algorithm for optimization problems, Soft Comput., 21 (2017), 7337–7349.
 69. H. B. Ouyang, L. Q. Gao, S. Li, et al., Improved harmony search algorithm: Lhs, Appl. Soft. Comput., 53 (2017), 133–167.
 70. E. A. PortillaFlores, Á . SańchezMaŕquez, L. FloresPulido, et al., Enhancing the harmony search algorithm performance on constrained numerical optimization, IEEE Access, 5 (2017), 25759–25780.
 71. S. Tuo, L. Yong and T. Zhou, An improved harmony search based on teachinglearning strategy for unconstrained optimization problems, Math. Probl. Eng., 2013 (2013), 1–21.
 72. G. Wang, L. Guo, H. Duan, et al., Hybridizing harmony search with biogeography based optimization for global numerical optimization, J. Comput. Theor. Nanosci., 10 (2013), 2312–2322.
 73. G. G.Wang, A. H. Gandomi, X. Zhao, et al., Hybridizing harmony search algorithm with cuckoo search for global numerical optimization, Soft Comput., 20 (2016), 273–285.
 74. X. Yuan, J. Zhao, Y. Yang, et al., Hybrid parallel chaos optimization algorithm with harmony search algorithm, Appl. Soft. Comput., 17 (2014), 12–22.
 75. F. Zhao, Y. Liu, C. Zhang, et al., A selfadaptive harmony pso search algorithm and its performance analysis, Expert. Syst. Appl., 42 (2015), 7436–7455.
 76. A. Fouad, D. Boukhetala, F. Boudjema, et al., A novel global harmony search method based on ant colony optimisation algorithm, J. Exp. Theor. Artif. Intell., 28 (2016), 215–238.
 77. G. Zhang and Y. Li, A memetic algorithm for global optimization of multimodal nonseparable problems, IEEE T. Cy., 46 (2016), 1375–1387.
 78. A. Assad and K. Deep, A hybrid harmony search and simulated annealing algorithm for continuous optimization, Inform. Sci., 450 (2018), 246–266.
 79. A. Sadollah, H. Sayyaadi, D. G. Yoo, et al., Mine blast harmony search: A new hybrid optimization method for improving exploration and exploitation capabilities, Appl. Soft. Comput., 68 (2018), 548–564.
 80. L. Wang, H. Hu, R. Liu, et al., An improved differential harmony search algorithm for function optimization problems, Soft Comput., (2018), 1–26.
 81. B. L. Miller and D. E. Goldberg, Genetic algorithms, selection schemes, and the varying effects of noise, Evol. Comput., 4 (1996), 113–131.
 82. Y. Shi, H. Liu, L. Gao, et al., Cellular particle swarm optimization, Inform. Sci., 181 (2011), 4460–4493.
 83. C. Lu, L. Gao and J. Yi, Grey wolf optimizer with cellular topological structure, Expert. Syst. Appl., 107 (2018), 89–114.
 84. A. Turky, S. Abdullah and A. Dawod, A dualpopulation multi operators harmony search algorithm for dynamic optimization problems, Comput. Ind. Eng., 117 (2018), 19–28.
 85. G. Wang and L. Guo, A novel hybrid bat algorithm with harmony search for global numerical optimization, J. Appl. Math., 2013 (2013), 1–21.
 86. K. Z. Gao, P. N. Suganthan, Q. K. Pan, et al., Paretobased grouping discrete harmony search algorithm for multiobjective flexible job shop scheduling, Inform. Sci., 289 (2014), 76–90.
 87. K. Z. Gao, P. N. Suganthan, Q. K. Pan, et al., An effective discrete harmony search algorithm for flexible job shop scheduling problem with fuzzy processing time, Int. J. Prod. Res., 53 (2015), 5896–5911.
 88. K. Z. Gao, P. N. Suganthan, Q. K. Pan, et al., Discrete harmony search algorithm for flexible job shop scheduling problem with multiple objectives, J. Intell. Manuf., 27 (2016), 363–374.
 89. K. Gao, L.Wang, J. Luo, et al., Discrete harmony search algorithm for scheduling and rescheduling the reprocessing problems in remanufacturing: a case study, Eng. Optimiz., 50 (2018), 965– 981.
 90. L. Liu and H. Zhou, Hybridization of harmony search with variable neighborhood search for restrictive singlemachine earliness/tardiness problem, Inform. Sci., 226 (2013), 68–92.
 91. Y. Yuan, H. Xu and J. Yang, A hybrid harmony search algorithm for the flexible job shop scheduling problem, Appl. Soft. Comput., 13 (2013), 3259–3272.
 92. F. Zammori, M. Braglia and D. Castellano, Harmony search algorithm for singlemachine scheduling problem with planned maintenance, Comput. Ind. Eng., 76 (2014), 333–346.
 93. Y. Li, X. Li and J. N. Gupta, Solving the multiobjective flowline manufacturing cell scheduling problem by hybrid harmony search, Expert. Syst. Appl., 42 (2015), 1409–1417.
 94. C. GarciaSantiago, J. Del Ser, C. Upton, et al., A randomkey encoded harmony search approach for energyefficient production scheduling with shared resources, Eng. Optimiz., 47 (2015), 1481–1496.
 95. A. Maroosi, R. C. Muniyandi, E. Sundararajan, et al., A parallel membrane inspired harmony search for optimization problems: A case study based on a flexible job shop scheduling problem, Appl. Soft. Comput., 49 (2016), 120–136.
 96. Z. Guo, L. Shi, L. Chen, et al., A harmony searchbased memetic optimization model for integrated production and transportation scheduling in mto manufacturing, Omega, 66 (2017), 327– 343.
 97. F. Zhao, Y. Liu, Y. Zhang, et al., A hybrid harmony search algorithm with efficient job sequence scheme and variable neighborhood search for the permutation flow shop scheduling problems, Eng. Appl. Artif. Intell., 65 (2017), 178–199.
 98. M. Gaham, B. Bouzouia and N. Achour, An effective operations permutationbased discrete harmony search approach for the flexible job shop scheduling problem with makespan criterion, Appl. Intell., 48 (2018), 1423–1441.
 99. F. Zhao, S. Qin, G. Yang, et al., A differentialbased harmony search algorithm with variable neighborhood search for job shop scheduling problem and its runtime analysis, IEEE Access, 6 (2018), 76313–76330.
 100. S. M. Lee and S. Y. Han, Topology optimization scheme for dynamic stiffness problems using harmony search method, Int. J. Precis. Eng. Manuf., 17 (2016), 1187–1194.
 101. S. M. Lee and S. Y. Han, Topology optimization based on the harmony search method, J. Mech. Sci. Technol., 31 (2017), 2875–2882.
 102. J. Yi, X. Li, M. Xiao, et al., Construction of nested maximin designs based on successive local enumeration and modified novel global harmony search algorithm, Eng. Optimiz., 49 (2017), 161–180.
 103. B. Keshtegar, P. Hao, Y. Wang, et al., Optimum design of aircraft panels based on adaptive dynamic harmony search, ThinWalled Struct., 118 (2017), 37–45.
 104. B. Keshtegar, P. Hao, Y. Wang, et al., An adaptive response surface method and gaussian globalbest harmony search algorithm for optimization of aircraft stiffened panels, Appl. Soft. Comput., 66 (2018), 196–207.
 105. H. Ouyang, W. Wu, C. Zhang, et al., Improved harmony search with general iteration models for engineering design optimization problems, Soft Comput., 0 (2018), 1–36.
 106. X. Li, K. Qin, B. Zeng, et al., Assembly sequence planning based on an improved harmony search algorithm, Int. J. Adv. Manuf. Tech., 84 (2016), 2367–2380.
 107. X. Li, K. Qin, B. Zeng, et al., A dynamic parameter controlled harmony search algorithm for assembly sequence planning, Int. J. Adv. Manuf. Tech., 92 (2017), 3399–3411.
 108. G. Li, B. Zeng, W. Liao, et al., A new agv scheduling algorithm based on harmony search for material transfer in a realworld manufacturing system, Adv. Mech. Eng., 10 (2018), 1–13.
 109. G. Li, X. Li, L. Gao, et al., Tasks assigning and sequencing of multiple agvs based on an improved harmony search algorithm, J. Ambient Intell. Humaniz., 0 (2018), 1–14.
 110. M. B. B. Mahaleh and S. A. Mirroshandel, Harmony search path detection for vision based automated guided vehicle, Robot. Auton. Syst., 107 (2018), 156–166.
 111. M. Ayyıldız and K. C¸ etinkaya, Comparison of four different heuristic optimization algorithms for the inverse kinematics solution of a real 4dof serial robot manipulator, Neural Comput. Appl., 27 (2016), 825–836.
 112. O. Zarei, M. Fesanghary, B. Farshi, et al., Optimization of multipass facemilling via harmony search algorithm, J. Mater. Process. Technol., 209 (2009), 2386–2392.
 113. K. Abhishek, S. Datta and S. S. Mahapatra, Multiobjective optimization in drilling of cfrp (polyester) Measurement, 77 (2016), 222–239.
 114. S. Kumari, A. Kumar, R. K. Yadav, et al., Optimisation of machining parameters using grey relation analysis integrated with harmony search for turning of aisi d2 steel, Materials Today: Proceedings, 5 (2018), 12750–12756.
 115. J. Yi, C. H. Chu, C. L. Kuo, et al., Optimized tool path planning for fiveaxis flank milling of ruled surfaces using geometric decomposition strategy and multipopulation harmony search algorithm, Appl. Soft. Comput., 73 (2018), 547–561.
 116. S. Atta, P. R. S. Mahapatra and A. Mukhopadhyay, Solving tool indexing problem using harmony search algorithm with harmony refinement, Soft Comput., (2018), 1–17.
 117. C. C. Lin, D. J. Deng, Z. Y. Chen, et al., Key design of driving industry 4.0: Joint energyefficient deployment and scheduling in groupbased industrial wireless sensor networks, IEEE Commun. Mag., 54 (2016), 46–52.
 118. B. Zeng and Y. Dong, An improved harmony search based energyefficient routing algorithm for wireless sensor networks, Appl. Soft. Comput., 41 (2016), 135–147.
 119. L. Wang, L. An, H. Q. Ni, et al., Paretobased multiobjective node placement of industrial wireless sensor networks using binary differential evolution harmony search, Adv. Manuf., 4 (2016), 66–78.
 120. O. Moh'd Alia and A. AlAjouri, Maximizing wireless sensor network coverage with minimum cost using harmony search algorithm, IEEE Sens. J., 17 (2017), 882–896.
 121. C. C. Lin, D. J. Deng, J. R. Kang, et al., Forecasting rare faults of critical components in led epitaxy plants using a hybrid grey forecasting and harmony search approach, IEEE Trans. Ind. Inform., 12 (2016), 2228–2235.
 122. S. Kang and J. Chae, Harmony search for the layout design of an unequal area facility, Expert. Syst. Appl., 79 (2017), 269–281.
 123. J. Lin, M. Liu, J. Hao, et al., Manyobjective harmony search for integrated order planning in steelmakingcontinuous castinghot rolling production of multiplants, Int. J. Prod. Res., 55 (2017), 4003–4020.
 124. Y. H. Kim, Y. Yoon and Z. W. Geem, A comparison study of harmony search and genetic algorithm for the maxcut problem, Swarm Evol. Comput., 44 (2018), 130–135.
 125. B. Naderi, R. TavakkoliMoghaddam, et al., Electromagnetismlike mechanism and simulated annealing algorithms for flowshop scheduling problems minimizing the total weighted tardiness and makespan, KnowledgeBased Syst., 23 (2010), 77–85.
 126. M. R. Garey, D. S. Johnson and R. Sethi, The complexity of flowshop and jobshop scheduling, Math. Oper. Res., 1 (1976), 117–129.
 127. P. J. Van Laarhoven, E. H. Aarts and J. K. Lenstra, Job shop scheduling by simulated annealing, Oper. Res., 40 (1992), 113–125.
 128. M. Dell'Amico and M. Trubian, Applying tabu search to the jobshop scheduling problem, Ann. Oper. Res., 41 (1993), 231–252.
 129. I. Kacem, S. Hammadi and P. Borne, Approach by localization and multiobjective evolutionary optimization for flexible jobshop scheduling problems, IEEE T. Syst. Man. Cy. C., 32 (2002), 1–13.
 130. W. Xia and Z. Wu, An effective hybrid optimization approach for multiobjective flexible jobshop scheduling problems, Comput. Ind. Eng., 48 (2005), 409–425.
 131. G. Zhang, X. Shao, P. Li, et al., An effective hybrid particle swarm optimization algorithm for multiobjective flexible jobshop scheduling problem, Comput. Ind. Eng., 56 (2009), 1309–1318.
 132. G. Zhang, L. Gao and Y. Shi, An effective genetic algorithm for the flexible jobshop scheduling problem, Expert. Syst. Appl., 38 (2011), 3563–3573.
 133. Q. Lin, L. Gao, X. Li, et al., A hybrid backtracking search algorithm for permutation flowshop scheduling problem, Comput. Ind. Eng., 85 (2015), 437–446.
 134. C. Lu, L. Gao, X. Li, et al., Energyefficient permutation flow shop scheduling problem using a hybrid multiobjective backtracking search algorithm, J. Cleaner. Prod., 144 (2017), 228–238.
 135. C. Viergutz and S. Knust, Integrated production and distribution scheduling with lifespan constraints, Ann. Oper. Res., 213 (2014), 293–318.
 136. R. T. Lund, Remanufacturing, Technol. Rev., 87 (1984), 18.
 137. Y. Liu, H. Dong, N. Lohse, et al., An investigation into minimising total energy consumption and total weighted tardiness in job shops, J. Cleaner. Prod., 65 (2014), 87–96.
 138. M. Mashayekhi, E. Salajegheh and M. Dehghani, Topology optimization of double and triple layer grid structures using a modified gravitational harmony search algorithm with efficient member grouping strategy, Comput. Struct., 172 (2016), 40–58.
 139. M. F. F. Rashid, W. Hutabarat and A. Tiwari, A review on assembly sequence planning and assembly line balancing optimisation using soft computing approaches, Int. J. Adv. Manuf. Tech., 59 (2012), 335–349.
 140. D. Ghosh, A new genetic algorithm for the tool indexing problem, Technical report, Indian Institute of Management Ahmedabad, 2016.
 141. D. Ghosh, Exploring Lin Kernighan neighborhoods for the indexing problem, Technical report, Indian Institute of Management Ahmedabad, 2016.
 142. M. Hermann, T. Pentek and B. Otto, Design principles for industrie 4.0 scenarios, in System Sciences (HICSS), 2016 49th Hawaii International Conference on, IEEE, (2016), 3928–3937.
 143. S. Das, A. Mukhopadhyay, A. Roy, et al., Exploratory power of the harmony search algorithm: analysis and improvements for global numerical optimization, IEEE T. Syst. Man. Cy. B., 41 (2011), 89–106.
 144. L. Q. Gao, S. Li, X. Kong, et al., On the iterative convergence of harmony search algorithm and a proposed modification, Appl. Math. Comput., 247 (2014), 1064–1095.
 145. T. G. Dietterich, Ensemble methods in machine learning, in International workshop on multiple classifier systems, Springer, 2000, 1–15.
 146. S. Mahdavi, M. E. Shiri and S. Rahnamayan, Metaheuristics in largescale global continues optimization: A survey, Inform. Sci., 295 (2015), 407–428.
 147. G. Karafotias, M. Hoogendoorn and Á . E. Eiben, Parameter control in evolutionary algorithms: Trends and challenges, IEEE Trans. Evol. Comput., 19 (2015), 167–187.
Reader Comments
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *