
Mathematical Biosciences and Engineering, 2019, 16(4): 20232048. doi: 10.3934/mbe.2019099.
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Firing rate distributions in a feedforward network of neural oscillators with intrinsic and network heterogeneity
Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, VA 23284, USA
Received: , Accepted: , Published:
Keywords: phase oscillators; PRC; heterogeneity; population firing rate; phase reduction
Citation: Kyle Wendling, Cheng Ly. Firing rate distributions in a feedforward network of neural oscillators with intrinsic and network heterogeneity. Mathematical Biosciences and Engineering, 2019, 16(4): 20232048. doi: 10.3934/mbe.2019099
References:
 1. J. Gjorgjieva, R. A. Mease, W. J. Moody, et al., Intrinsic neuronal properties switch the mode of information transmission in networks, PLoS Comput. Biol., 10 (2014), e1003962.
 2. A. Kohn, R. CoenCagli, I. Kanitscheider, et al., Correlations and neuronal population information, Annu. Rev. Neurosci., 39 (2016), 237–256.
 3. C. Ly and G. Marsat, Variable synaptic strengths controls the firing rate distribution in feedforward neural networks, J. Comput. Neurosci., 44 (2018), 75–95.
 4. G. Marsat and L. Maler, Neural heterogeneity and efficient population codes for communication signals, J. Neurophysiol.y, 104 (2010), 2543–2555.
 5. R. A. Mease, M. Famulare, J. Gjorgjieva, et al., Emergence of adaptive computation by single neurons in the developing cortex, J. Neurosci., 33 (2013), 12154–12170.
 6. K. Padmanabhan and N. N. Urban, Intrinsic biophysical diversity decorrelates neuronal firing while increasing information content, Nature Neurosci., 13 (2010), 1276–1282.
 7. M. I. Chelaru and V. Dragoi, Efficient coding in heterogeneous neuronal populations, P. Nat. Acad. Sci., 105 (2008), 16344–16349.
 8. J. Mejias and A. Longtin, Optimal heterogeneity for coding in spiking neural networks, Phys. Rev. Lett., 108 (2012), 228102.
 9. A. S. Ecker, P. Berens, A. S. Tolias, et al., The effect of noise correlations in populations of diversely tuned neurons, J. Neurosci., 31 (2011), 14272–14283.
 10. C. Ly, Firing rate dynamics in recurrent spiking neural networks with intrinsic and network heterogeneity, J. Comput. Neurosci., 39 (2015), 311–327.
 11. E. Marder, Variability, compensation, and modulation in neurons and circuits, P. Nat. Acad. Sci., 108 (2011), 15542–15548.
 12. E. Marder and J.M. Goaillard, Variability, compensation and homeostasis in neuron and network function, Nature Rev. Neurosci., 7 (2006), 563.
 13. A. Roxin, N. Brunel, D. Hansel, et al., On the distribution of firing rates in networks of cortical neurons, J. Neurosci., 31 (2011), 16217–16226.
 14. S. Ratté, S. Hong, E. De Schutter, et al., Impact of neuronal properties on network coding: roles of spike initiation dynamics and robust synchrony transfer, Neuron, 78 (2013), 758–772.
 15. N.W. Schultheiss, A. A. Prinz and R. J. Butera, Phase Response Curves in Neuroscience: Theory, Experiment, and Analysis, vol. 6 of Springer Series in Computational Neuroscience, Springer, 2012.
 16. S. D. Burton, G. B. Ermentrout and N. N. Urban, Intrinsic heterogeneity in oscillatory dynamics limits correlationinduced neural synchronization, J. Neurophysiol., 108 (2012), 2115–2133.
 17. J. A. Acebrón, L. Bonilla, C. J. P. Vincente,et al., The kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137–185.
 18. J. Ahn, L. Kreeger, S. Lubejko, et al., Heterogeneity of intrinsic biophysical properties among cochlear nucleus neurons improves the population coding of temporal information, J. Neurophysiol., 111 (2014), 2320–2331.
 19. I. Aihara, Modeling synchronized calling behavior of japanese tree frogs, Phys. Rev. E, 80 (2009), 011918.
 20. K. Arai and H. Nakao, Phase coherence in an ensemble of uncoupled limitcycle oscillators receiving common poisson impulses, Phys. Rev. E, 77 (2008), 036218.
 21. P. Ashwin, S. Coombes and R. Nicks, Mathematical frameworks for oscillatory network dynamics in neuroscience, J. Math. Neurosci., 6 (2016), 2.
 22. R. Azouz and C. M. Gray, Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo, P. Nat. Acad. Sci., 97 (2000), 8110–8115.
 23. A. Bremaud, D. West and A. Thomson, Binomial parameters differ across neocortical layers and with different classes of connections in adult rat and cat neocortex, P. Nat. Acad. Sci., 104 (2007), 14134–14139.
 24. R. J. Butera Jr, J. Rinzel and J. C. Smith, Models of respiratory rhythm generation in the prebotzinger complex. ii. populations of coupled pacemaker neurons, J. Neurophysiol., 82 (1999), 398–415.
 25. F. P. Chabrol, A. Arenz, M. T. Wiechert, et al., Synaptic diversity enables temporal coding of coincident multisensory inputs in single neurons, Nature Neurosci., 18 (2015), 718.
 26. B. Ermentrout, Type i membranes, phase resetting curves, and synchrony, Neural. Comput., 8 (1996), 979–1001.
 27. B. Ermentrout, Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students, vol. 14, Siam, 2002.
 28. G. B. Ermentrout and D. H. Terman, Mathematical Foundations of Neuroscience, vol. 35 of Interdisciplinary Applied Mathematics, Springer, 2010.
 29. A. Georgopoulos, A. Schwartz and R. Kettner, Neuronal population coding of movement direction, Science, 233 (1986), 1416–1419.
 30. J. Gjorgjieva, G. Drion and E. Marder, Computational implications of biophysical diversity and multiple timescales in neurons and synapses for circuit performance, Curr. Opin. Neurobiol., 37 (2016), 44–52.
 31. P. Goel and B. Ermentrout, Synchrony, stability, and firing patterns in pulsecoupled oscillators, Physica D: Nonlinear Phenomena, 163 (2002), 191–216.
 32. R. Grashow, T. Brookings and E. Marder, Compensation for variable intrinsic neuronal excitability by circuitsynaptic interactions, J. Neurosci., 30 (2010), 9145–9156.
 33. G. Hermann and J. Touboul, Heterogeneous connections induce oscillations in largescale networks, Phys. Rev. Lett., 109 (2012), 018702.
 34. X. Jiang, S. Shen, C. R. Cadwell, et al., Principles of connectivity among morphologically defined cell types in adult neocortex, Science, 350 (2015), aac9462.
 35. S. Kay, Fundamentals of Statistical Signal Processing, Volume 1: Estimation Theory, Prentice Hall PTR, 1993.
 36. Y. Kuramoto, Chemical oscillations, waves and turbulence, Berlin: Springer, 1984.
 37. Y. Kuramoto, Selfentrainment of a population of coupled nonlinear oscillators, in International Symposium on Mathematical Problems in Theoretical Physics (ed. H. Araki), Springer Berlin Heidelberg, Berlin, Heidelberg, 1975, 420–422.
 38. R. B. Levy and A. D. Reyes, Spatial profile of excitatory and inhibitory synaptic connectivity in mouse primary auditory cortex, J Neurosci., 32 (2012), 5609–5619.
 39. C. Ly and B. Doiron, Noiseenhanced coding in phasic neuron spike trains, PLoS ONE, 4 (2017), e0176963.
 40. C. Ly and G. B. Ermentrout, Analysis of recurrent networks of pulsecoupled noisy neural oscillators, SIAM J. Appl. Dyn. Syst., 9 (2010), 113–137.
 41. C. Ly, T. Melman, A. L. Barth, et al., Phaseresetting curve determines how bk currents affect neuronal firing, J. Comput. Neurosci., 30 (2011), 211–223.
 42. T. McGeer et al., Passive dynamic walking, I. J. Robotic Res., 9 (1990), 62–82.
 43. A. L. Meredith, S.W.Wiler, B. H. Miller, et al., Bk calciumactivated potassium channels regulate circadian behavioral rhythms and pacemaker output, Nature Neurosci., 9 (2006), 1041.
 44. J. Middleton, A. Longtin, J. Benda, et al., Postsynaptic receptive field size and spike threshold determine encoding of highfrequency information via sensitivity to synchronous presynaptic activity, J. Neurophysiol., 101 (2009), 1160–1170.
 45. C. Morris and H. Lecar, Voltage oscillations in the barnacle giant muscle fiber, Biophys. J., 35 (1981), 193–213.
 46. J. M. Newby and M. A. Schwemmer, Effects of moderate noise on a limit cycle oscillator: Counterrotation and bistability, Phys. Rev. Lett., 112 (2014), 114101.
 47. S. Oprisan, A. Prinz and C. Canavier, Phase resetting and phase locking in hybrid circuits of one model and one biological neuron, Biophys. J., 87 (2004), 2283–2298.
 48. A. Oswald, B. Doiron, J. Rinzel, et al., Spatial profile and differential recruitment of gabab modulate oscillatory activity in auditory cortex, J. Neurosci., 29 (2009), 10321–10334.
 49. D. Parker, Variable properties in a single class of excitatory spinal synapse, J. Nneurosci., 23 (2003), 3154–3163.
 50. N. Priebe and D. Ferster, Inhibition, spike threshold, and stimulus selectivity in primary visual cortex, Neuron, 57 (2008), 482–497.
 51. H. Risken, The fokkerplanck equation. methods of solution and applications, vol. 18 of, Springer series in synergetics, 301.
 52. J. T. Schwabedal and A. Pikovsky, Phase description of stochastic oscillations, Phys. Rev. Lett., 110 (2013), 204102.
 53. M. Shamir and H. Sompolinsky, Implications of neuronal diversity on population coding, Neural computation, 18 (2006), 1951–1986.
 54. A. A. Sharp, F. K. Skinner and E. Marder, Mechanisms of oscillation in dynamic clamp constructed twocell halfcenter circuits, J. Neurophysiol., 76 (1996), 867–883.
 55. K. M. Stiefel, B. S. Gutkin and T. J. Sejnowski, Cholinergic neuromodulation changes phase response curve shape and type in cortical pyramidal neurons, PloS one, 3 (2008), e3947.
 56. J.N. Teramae, H. Nakao and G. B. Ermentrout, Stochastic phase reduction for a general class of noisy limit cycle oscillators, Phys. Rev. Lett., 102 (2009), 194102.
 57. P. J. Thomas and B. Lindner, Asymptotic phase for stochastic oscillators, Physical review letters, 113 (2014), 254101.
 58. T. I. Tóth, M. Grabowska, N. Rosjat, et al., Investigating intersegmental connections between thoracic ganglia in the stick insect by means of experimental and simulated phase response curves, Biol.l cybern., 109 (2015), 349–362.
 59. S. J. Tripathy, K. Padmanabhan, R. C. Gerkin, et al., Intermediate intrinsic diversity enhances neural population coding, P. Natl. Acad. Sci. USA, 110 (2013), 8248–8253.
 60. A. T.Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15–42.
 61. A. T. Winfree, The geometry of biological time, vol. 12, Springer Science & Business Media, 2001.
 62. L. Yassin, B. L. Benedetti, J.S. Jouhanneau, et al., An embedded subnetwork of highly active neurons in the neocortex, Neuron, 68 (2010), 1043–1050.
 63. R. A. York and T. Itoh, Injectionand phaselocking techniques for beam control [antenna arrays], IEEE T. Microw. Theory, 46 (1998), 1920–1929.
 64. R. Yuste, J. N. MacLean, J. Smith, et al., The cortex as a central pattern generator, Nature Rev. Neurosci., 6 (2005), 477.
 65. V. Zampini, J. K. Liu, M. A. Diana, et al., Mechanisms and functional roles of glutamatergic synapse diversity in a cerebellar circuit, eLife, 5 (2016), e15872.
 66. P. Zhou, S. Burton, N. Urban, et al., Impact of neuronal heterogeneity on correlated colored noiseinduced synchronization, Front. comput. neurosci., 7 (2013), 113.
Reader Comments
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *