Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Nanomedicine by extended non-equilibrium thermodynamics: cell membrane diffusion and scaffold medication release

1 Thermodynamics of Irreversible Phenomena, University of Liège, Liège, Belgium
2 Physical Chemistry Group, Université libre de Bruxelles, Brussels, Belgium
3 GIGA-In Silico Medicine, University of Liège, Liège, Belgium

Special Issues: Differential Equations in Mathematical Biology

In nanomedicine, an increasing interest has been allotted to local administration of drugs. For this to be efficient, some of the most important issues are to control or improve the drug release from scaffolds porting the medication and the drug uptake through the cell membranes. Next to in vitro experiments, models can provide for important information. Theories and models that account for the size of the scaffolds and cell membranes, as well as the relaxation time of drug molecules, are necessary in order to contribute to a better understanding. As microscopic models are not easy to implement in real-life applications, we propose a model, based on new developments in Extended Non-Equilibrium Thermodynamics, to analyse drug diffusion through cell membranes and drug release from scaffolds. Our model, although treating nano- and microscopic phenomena, gives well-defined macroscopic results that can readily be applied and compared to experiments, giving it high accessibility. It appears that non-local effects should be reduced in order to enhance medication permeation, whether it be through scaffold release or through a cell membrane. This can be done by controlling the size of the medication and its relaxation time, e.g. by surface functionalization. The latter is shown by introducing a slip factor, which confirms that a higher slip at the scaffold pore walls leads to an increase in the medication delivery.
  Article Metrics
Download full text in PDF

Export Citation

Article outline

Copyright © AIMS Press All Rights Reserved