Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Global stability of multi-group SIR epidemic model with group mixing and human movement

School of Mathematics and Statistics, Ningxia University, Yinchuan, 750021, P.R. China

Special Issues: Modeling and Complex Dynamics of Populations

In this paper, an SIR multi-group epidemic model with group mixing and human movement is investigated. The control reproduction number $\mathfrak{R}_v$ is derived and the global dynamics of the model are completely determined by the value of $\mathfrak{R}_v$. By using the graph-theoretical approach, the results show that the disease-free equilibrium is globally asymptotically stable if $\mathfrak{R}_v<1$, and the unique endemic equilibrium is globally asymptotically stable if $\mathfrak{R}_v>1$. Two numerical examples are further presented to testify the validity of the theoretical results.
  Figure/Table
  Supplementary
  Article Metrics
Download full text in PDF

Export Citation

Article outline

Copyright © AIMS Press All Rights Reserved