
Mathematical Biosciences and Engineering, 2019, 16(3): 15751596. doi: 10.3934/mbe.2019075
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
A multiobjective imperialist competitive algorithm (MOICA) for finding motifs in DNA sequences
1 Department of Applied Mathematics, Faculty of Mathematical Science, University of Guilan, Rasht, Iran
2 Department of Applied Mathematics, Faculty of Mathematical Science, University of Guilan, Rasht, Iran
3 Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
Received: , Accepted: , Published:
References
1. F. ZareMirakabad, H. Ahrabian and M. Sadeghi, et al., Genetic algorithm for dyad pattern finding in DNA sequences, Genes Genet. Syst., 84 (2009), 81–93.
2. M. Li, B. Ma and L. Wang, Finding similar regions in many sequences, J. Comput. Syst. Sci., 65 (2002), 73–96.
3. M. F. Sagot, Spelling approximate repeated or common motifs using a suffix tree, Springer, 1998.
4. F. W. Glover and G. A. Kochenberger, Handbook of metaheuristics, Springer Science & Business Media, 2006.
5. E. Czeizler, T. Hirvola and K. Karhu, A graphtheoretical approach for motif discovery in protein sequences, IEEE/ACM Trans. Comput. Biol. Bioinf., 14 (2017), 121–130.
6. M. Kaya, MOGAMOD: Multiobjective genetic algorithm for motif discovery, Expert. Syst. Appl., 36 (2009), 1039–1047.
7. D. L. GonzálezÁlvarez, M. A. VegaRodríguez and Á. RubioLargo, Multiobjective optimization algorithms for motif discovery in DNA sequences, Genet. Program. Evolvable Mach., 16 (2015), 167–209.
8. C. E. Lawrence and A. A. Reilly, An expectation maximization (EM) algorithm for the identification and characterization of common sites in unaligned biopolymer sequences, Proteins, 7 (1990), 41–51.
9. C. E. Lawrence, S. F. Altschul and M. S. Boguski, et al., Detecting subtle sequence signals: A Gibbs sampling strategy for multiple alignment, Science, 262 (1993), 208–214.
10. T. L. Bailey and C. Elkan, Fitting a mixture model by expectation maximization to discover motifs in bipolymers, Proc. Int. Conf. Intell. Syst. Mol. Biol., 2 (1994), 28–36..
11. F. P. Roth, J. D. Hughes and P. W. Estep, et al., Finding DNA regulatory motifs within unaligned noncoding sequences clustered by wholegenome mRNA quantitation, Nat. Biotechnol., 16 (1998), 939–945.
12. K. C. Wong, MotifHyades: Expectation maximization for de novo DNA motif pair discovery on paired sequences, Bioinformatics, 33 (2017), 3028–3035.
13. K. C. Wong, DNA Motif Recognition Modeling from Protein Sequences, iScience, 7 (2018), 198–211.
14. G. Pavesi, P. Mereghetti and G. Mauri, et al., Weeder Web: Discovery of transcription factor binding sites in a set of sequences from coregulated genes. Nucleic Acids Res., 32 (2004), W199–W203.
15. E. Eskin and P. A. Pevzner, Finding composite regulatory patterns in DNA sequences, Bioinformatics, 18 (2002), S354–S363.
16. P. A. Evans and A. D. Smith, Toward optimal motif enumeration, Springer, 2003.
17. J. Serra, A. Matic and A. Karatzoglou, et al., A genetic algorithm to discover flexible motifs with support, IEEE, 2016.
18. N. Pisanti, A. M. Carvalho and L. Marsan, et al., RISOTTO: Fast extraction of motifs with mismatches, Springer, 2006.
19. G. Z. Hertz and G. D. Stormo, Identifying DNA and protein patterns with statistically significant alignments of multiple sequences, Bioinformatics, 15 (1999), 563–577.
20. D. L. GonzálezÁlvarez, M. A. VegaRodríguez and J. A. GómezPulido, et al., Finding Motifs in DNA Sequences Applying a Multiobjective Artificial Bee Colony (MOABC) Algorithm, Springer, 2011.
21. D. L. GonzálezÁlvarez, M. A. VegaRodríguez and Á. RubioLargo, Searching for common patterns on protein sequences by means of a parallel hybrid honeybee mating optimization algorithm, Parallel. Comput., 76 (2018), 1–17.
22. E. Zitzler and L. Thiele, Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach, IEEE T. Evolut. Comput., 3 (1999), 257–271.
23. E. Wingender, P, Dietze and H. Karas, et al., TRANSFAC: A database on transcription factors and their DNA binding sites, Nucleic Acids Res., 24 (1996), 238–241.
24. D. L. GonzálezÁlvarez, M. A. VegaRodríguez and J. A. GómezPulido, et al., Solving the motif discovery problem by using differential evolution with pareto tournaments, IEEE, 2010.
25. G. B. Fogel, D. G. Weekes and G. Varga, et al., Discovery of sequence motifs related to coexpression of genes using evolutionary computation, Nucleic Acids Res., 32 (2004), 3826–3835.
26. E. Zitzler, K. Deb and L. Thiele, Comparison of multiobjective evolutionary algorithms: Empirical results, Evolut. Comput., 8 (2000), 173–195.
27. E. AtashpazGargari and C. Lucas, Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition, IEEE, 2007.
28. D. L. GonzalezÁlvarez, M. A. VegaRodriguez and J. A. GomezPulido, et al., Predicting DNA motifs by using evolutionary multiobjective optimization, IEEE. T. Syst. Man. Cy. C., 42 (2012), 913–925.
29. X. S. Yang, Firefly algorithms for multimodal optimization, Springer, 2009.
30. D. L. GonzálezÁlvarez, M. A. VegaRodríguez and J, A. GómezPulido, et al., Applying a multiobjective gravitational search algorithm (MOGSA) to discover motifs, Springer, 2011.
31. E. Zitzler, M. Laumanns and L. Thiele, SPEA2: Improving the strength Pareto evolutionary algorithm, 2001.
32. K. Deb, A. Pratap and S. Agarwal, et al., A fast and elitist multiobjective genetic algorithm: NSGAII, IEEE T. Evolut. Comput., 6 (2002), 182–197.
33. M. Tompa, N. Li and T. L. Bailey, et al., Assessing computational tools for the discovery of transcription factor binding sites, Nat. Biotechnol., 23 (2005), 137.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)