
Mathematical Biosciences and Engineering, 2019, 16(3): 15251553. doi: 10.3934/mbe.2019073.
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Global stability of an agestructured epidemic model with general Lyapunov functional
1 Laboratoire d’Analyse Nonlinéaire et Mathématiques Appliquées, University of Tlemcen, Tlemcen 13000, Algeria
2 Graduate School of System Informatics, Kobe University, 11 Rokkodaicho, Nadaku, Kobe 6578501, Japan
Received: , Accepted: , Published:
Special Issues: Differential Equations in Mathematical Biology
Keywords: SIR epidemic model; infection age; nonlinear incidence; persistence; Lyapunov function; global stability
Citation: Abdennasser Chekroun, Mohammed Nor Frioui, Toshikazu Kuniya, Tarik Mohammed Touaoula. Global stability of an agestructured epidemic model with general Lyapunov functional. Mathematical Biosciences and Engineering, 2019, 16(3): 15251553. doi: 10.3934/mbe.2019073
References:
 1. N. Bacaër, A Short History of Mathematical Population Dynamics, SpringerVerlag, London, UK, 2011.
 2. W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics  I, Proc. R. Soc., 115 (1927), 700–721.
 3. O. Diekmann and J. A. P. Heesterbeek, Mathematical epidemiology of infectious diseases: Model building, analysis and interpretation, Wiley, Chichester, UK, 2000.
 4. H. Inaba, AgeStructured Population Dynamics in Demography and Epidemiology, Springer, Singapore, 2017.
 5. P. Magal, C. C. McCluskey and G. F. Webb, Lyapunov functional and global asymptotic stability for an infectionage model, Appl. Anal., 89 (2010), 1109–1140.
 6. Y. Chen, S. Zou and J. Yang, Global analysis of an SIR epidemic model with infection age and saturated incidence, Nonlinear Anal. RWA, 30 (2016), 16–31.
 7. L. Liu, J. Wang and X. Liu, Global stability of an SEIR epidemic model with agedependent latency and relapse, Nonlinear Anal. RWA, 24 (2015), 18–35.
 8. C. C. McCluskey, Global stability for an SEI epidemiological model with continuous agestructure in the exposed and infectious classes, Math. Biosci. Eng., 9 (2012), 819–841.
 9. C. VargasDeLeon, Global stability properties of agedependent epidemic models with varying rates of recurrence, Math. Meth. Appl. Sci., 39 (2016), 2057–2064.
 10. J. Yang, Y. Chen and T. Kuniya, Threshold dynamics of an agestructured epidemic model with relapse and nonlinear incidence, IMA J. Appl. Math., 82 (2017), 629–655.
 11. A. Chekroun and T. Kuniya, Stability and existence results for a timedelayed nonlocal model of hematopoietic stem cells dynamics, J. Math. Anal. Appl., 463 (2018), 1147–1168.
 12. K. Hattaf and Y. Yang, Global dynamics of an agestructured viral infection model with general incidence function and absorption, Int. J. Biomath., 11 (2018). 1850065
 13. G. ur Rahman, R. P. Agarwal, L. Liu and A. Khan, Threshold dynamics and optimal control of an agestructured giving up smoking model, Nonlinear Anal. RWA, 43 (2018), 96–120.
 14. V. Capasso and G. Serio, A generalization of the KermackMcKendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43–61.
 15. S. Djilali, T. M. Touaoula and S. E. H. Miri, A heroin epidemic model: very general non linear incidence, treatage, and global stability, Acta Applicandae Mathematicae, 152 (2017), 171–194.
 16. Z. Feng and H. R. Thieme, Endemic models with arbitrarily distributed periods of infection I: fundamental properties of the model, SIAM J. Appl. Math., 61 (2000), 803–833.
 17. Z. Feng and H. R. Thieme, Endemic models with arbitrarily distributed periods of infection II: fast disease dynamics and permanent recovery, SIAM J. Appl. Math., 61 (2000), 983–1012.
 18. M. N. Frioui, S. E. Miri and T. M. Touaoula, Unified Lyapunov functional for an agestructured virus model with very general nonlinear infection response, J. Appl. Math. Comput., 58 (2018), 47–73.
 19. K. Hattaf, A. A. Lashari, Y. Louartassi and N. Yousfi, A delayed SIR epidemic model with general incidence rate, Electron. J. Qual. Theo. Diff. Equ., 3 (2013), 1–9.
 20. G. Huang and Y. Takeuchi, Global analysis on delay epidemiological dynamic models with nonlinear incidence, J. Math. Biol., 63 (2011), 125–139.
 21. G. Huang, Y. Takeuchi, W. Ma and D. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72 (2010), 1192–1207.
 22. A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with nonlinear transmission, Bull. Math. Biol., 68 (2006), 615–626.
 23. A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence, Bull. Math. Biol., 69 (2007), 18711886.
 24. A. Korobeinikov and P. K. Maini, Nonlinear incidence and stability of infectious disease models, Math. Med. Biol., 22 (2005), 113–128.
 25. S. Liu, S.Wang and L.Wang, Global dynamics of delay epidemic models with nonlinear incidence rate and relapse, Nonlinear Anal. RWA, 12 (2011), 119–127.
 26. J.Wang, J. Pang and X. Liu, Modelling diseases with relapse and nonlinear incidence of infection: a multigroup epidemic model, J. Biol. Dyn., 8 (2014), 99–116.
 27. S. Bentout and T. M. Touaoula, Global analysis of an infection age model with a class of nonlinear incidence rates, J. Math. Anal. Appl., 434 (2016), 1211–1239.
 28. P. van den Driessche and X. Zou, Modeling relapse in infectious diseases, Math. Biosci., 207 (2007), 89–103.
 29. B. Fang, X. Z. Li, M. Martcheva and L. M. Cai, Global asymptotic properties of a heroin epidemic model with treatage, Appl. Math. Comput., 263 (2015), 315–331.
 30. G. Mulone and B. Straughan, A note on heroin epidemics, Math. Biosci., 218 (2009), 138–141.
 31. Y. Muroya, H. Li and T. Kuniya, Complete global analysis of an SIRS epidemic model with grated cure and incomplete recovery rates, J. Math. Anal. Appl., 410 (2014), 719–732.
 32. E. White and C. Comiskey, Heroin epidemics, treatment and ODE modelling, Math. Biosci. 208 (2007), 312–324.
 33. I. M. Wangari and L. Stone, Analysis of a heroin epidemic model with saturated treatment function, J. Appl. Math., 2017 (2017), Article ID 1953036.
 34. P. Munz, I. Hudea, J. Imad and R. J. Smith, When zombies attack!: mathematical modelling of an outbreak of zombie infection, in Infectious Disease Modelling Research Progress (eds. J.M. Tchuenche and C. Chiyaka), New York, Nova Science Publishers, (2009), 133–150.
 35. J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, V. 99, AMS, 1993.
 36. B. Balachandran, T. KalmarNagy and D. E. Gilsin, Delay Differential Equations: Recent Advances and New Direction, Springerverlag, 2009.
 37. H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, Graduate Studies in Mathematics V. 118, AMS, 2011.
 38. H. R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton 2003.
 39. B. Perthame, Transport Equations in Biology, Birkhäuser, Berlin, 2007.
This article has been cited by:
 1. Abdennasser Chekroun, Toshikazu Kuniya, V. Vougalter, V. Volpert, An infection agespacestructured SIR epidemic model with Dirichlet boundary condition, Mathematical Modelling of Natural Phenomena, 2019, 14, 5, 505, 10.1051/mmnp/2019048
 2. Boning Wu, Xuesong Zhou, Youjie Ma, Bus Voltage Control of DC Distribution Network Based on Sliding Mode Active Disturbance Rejection Control Strategy, Energies, 2020, 13, 6, 1358, 10.3390/en13061358
Reader Comments
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *